Закон движения при равноускоренном движении. Равноускоренное движение. Связь перемещения тела с его скоростью

Определение 1

Движение, при котором за одинаковые интервалы времени тело проходит неравное расстояние, называют неравномерным (или переменным).

При переменном движении скорость тела с течением времени меняется, по этой причине для характеристики подобного перемещения применяются определения средней и моментальной скоростей.

Средней скоростью переменного движения $v_{cp}$ называют векторную величину, равную отношению перемещения тела $s$ к промежутку времени $t$, в течении которого оно совершило перемещение:

$v_{cp} = lim\left(\frac{Ds}{Dt}\right)$.

Переменное перемещение внедряет в процесс только лишь тот интервал времени, для которого эта скорость установлена. Мгновенной скоростью является скорость, какой тело обладает в определенный период времени (и значит, в конкретной точке траектории). Мгновенная скорость $v$ является пределом, к которому устремляется средняя скорость точки $v_{cp}$, в то время как промежуток времени движения точки стремится к 0:

$v = lim\left(\frac{Ds}{Dt}\right)$.

Из курса математики известно, что предел отношения приращения функции к приращению аргумента, когда последний стремится к 0 (если этот порог существует), выступает главной производной этой функции по данному аргументу.

Изучим, как скатывается шарик с наклонной плоскости. Шар перемещается неровно: пути, проходимые им за последовательные одинаковые интервалы периода, увеличиваются. Таким образом, темп передвижения шарика возрастает. Перемещение объекта, скатывающегося с косой плоскости, считается классическим примером прямолинейного равноускоренного перемещения.

Рассмотрим определение равноускоренного движения.

Определение 2

Прямолинейным равноускоренным движением именуют прямолинейное перемещение, при котором скорость тела за любые одинаковые интервалы времени меняется на одну и ту же величину.

Прямо равноускорено способен передвигаться, к примеру, транспорт в период разгона. Но необычным может представиться в таком случае, то что во время торможения машина также способна передвигаться прямолинейно равноускорено! Так как в определении равноускоренного перемещения речь никак не идет не о росте стремительности, а только лишь об изменении скорости.

Суть в том, что представление ускорения в физике обширнее, нежели в обыденном понимании. В повседневной речи под ускорением подразумевают как правило только лишь повышение быстроты. Мы в физике станем говорить, то что тело перемещается с ускорением постоянно, если быстрота тела меняется любым способом (возрастает либо снижается согласно модулю, меняется согласно направленности и т.п.).

Может возникнуть вопрос: по какой причине мы уделяем внимание непосредственно прямолинейному равноускоренному перемещению? Забегая немножко вперед, скажем, что с этим перемещением мы будем часто иметь дело при рассмотрении законов механики.

Напомним, что под воздействием стабильной силы тело перемещается прямо равноускорено. (В случае если первоначальная скорость тела равна нулю либо ориентирована по линии воздействия силы.) А в многочисленных задачах из сферы механики рассматривается непосредственно такая ситуация, в которой применяются уравнения прямолинейного равноускоренного движения, формулы конечной скорости и формулы пути без времени.

Равноускоренное движение тела

Определение 3

Равноускоренное движение - это перемещение тела, при каком его скорость за всевозможные одинаковые интервалы времени меняется (способна расти либо снижаться) одинаково.

Равноускоренное перемещение никак не обладает равной скоростью в течении всего пути прохождения. В этом случае имеется убыстрение, что отвечает за непрерывное повышение скорости. Ускорение перемещения остается постоянным, а темп регулярно и одинаково увеличивается.

Кроме равноускоренного имеется также равнозамедленное перемещение, где модуль темп одинаково уменьшается. Таким образом, равноускоренное перемещение способно проходить в некоторых измерениях. Оно бывает:

  • одномерным;
  • многомерным.

В случае первого - перемещение осуществляется по одной оси местоположение. В случае второго могут добавляться и прочие замеры.

Ускорение тела

Применять формулы перемещений при равноускоренном движении, а также формулы ускорения без времени возможно в абсолютно различных плоскостях. К примеру, с целью расчета падения жестких тел в свободном падении, места падения. В частности, для различных точных и геометрических расчетов.

Исходя из противопоставления равномерному перемещению, неравномерное - это движение с разной скоростью согласно каждой траектории. В чем его особенность? Это неравномерное передвижение, но оно "равно ускоряется".

Ускорение мы ассоциируем с увеличением скорости. Так как она ускоряется одинаково, получается равное увеличение скорости. Как понять, скорость равно увеличивается или нет? Нам нужно засечь время, оценить скорость через одинаковый промежуток времени, используя формулы ускорения при равноускоренном движении.

Пример 1

Например, автомобиль начал движение, за первые 2 сек он развил скорость до 10 м/с, за последующие 2 сек 20 м/с. Еще через 2 сек он уже едет со скоростью 30 м/с. Каждые 2 секунды темп возрастает и каждый раз на 10 м/с.

Такое передвижение и является равноускоренным. Ускорением называется величина, определяющая, насколько каждый раз увеличивается скорость. Кроме этого необходимо обратить внимание на формулу скорости при равноускоренном движении.

Перемещение с убывающей скоростью - замедленное передвижение. Однако физики каждое перемещение с изменяющейся быстротой называют ускоренным перемещением. Трогается ли автомобиль с участка (темп увеличивается), либо притормаживает - скорость снижается, в каждом случае он перемещается с ускорением.

Быстроту изменения скорости характеризует ускорение. Это число, на которое меняется скорость за каждую секунду. Если ускорение точки по модулю большое, значит точка стремительно набирает скорость (при разгоне) или быстро сбрасывает ее (при торможении). Ускорение $a$ - это физическая векторная величина, которая равна отношению перемены скорости $\delta V$ к промежутку времени $\delta t$, за которое оно произошло

$\vec{a} = \frac{\delta V}{\delta t}$

Равномерное движение

Механическое передвижение, при котором тело за всевозможные одинаковые интервалы времени проходит одну и ту же дистанцию является равномерным. При равномерном перемещении значение скорости точки остаётся стабильной (формула равномерного и равноускоренного движения).

$υ = \frac{l}{\delta t}$, где:

  • $υ$– скорость равномерного движения (м/с)
  • $l$– пройденный телом путь (м)
  • $ \delta t$– интервал времени движения (с)

Равномерное перемещение присутствует, если скорость предмета остается равной в каждом интервале пройденного пути, к этом случае период прохождения различных двух одинаковых участков будет одинаково.

В случае если перемещение является не только лишь равномерным, а и прямолинейным, в таком случае путь тела одинаковый с модулем передвижения. По этой причине, воспользовавшись аналогией с предшествующей формулой равноускоренного движения, в физике определяют скорость равномерного прямолинейного перемещения:

$ \vec{v} = \frac{\vec s}{\vec\delta t}$, где:

  • $ \vec{v}$ - скорость равно прямолинейного движения, м/с
  • $ \vec{s}$ - перемещение тела, м
  • ${\vec\delta t}$ - интервал времени движения, с

Скорость равномерного прямолинейного движения является вектором, так как перемещение – величина векторная. А значит, имеет не только числовое значение, но и пространственное направление.

Замечание 1

Равноускоренное перемещение отлично от равномерного тем, что быстрота в этом перемещении регулярно и одинаково увеличивается, вплоть до конкретного предела. В равномерном же перемещении скорость не изменяется ни в коем случае, другим образом подобное перемещение никак не станет называться равномерным.

Важнейшей характеристикой при движении тела является его скорость. Зная ее, а также некоторые другие параметры, мы всегда можем определить время движения, пройденное расстояние, начальную, конечную скорость и ускорение. Равноускоренное движение же является только одним из типов движения. Обычно оно встречается в задачах по физике из раздела кинематики. В подобных задачах тело принимают за материальную точку, что существенно упрощает все расчеты.

Скорость. Ускорение

Прежде всего, хотелось бы обратить внимание читателя на то, что эти две физических величины являются не скалярными, а векторными. А это значит, что при решении определенного рода задач необходимо обращать внимание на то, какое ускорение имеет тело в плане знака, а также каков вектор самой скорости тела. Вообще в задачах исключительно математического плана подобные моменты опускают, но в задачах по физике это достаточно важно, поскольку в кинематике из-за одного неверно поставленного знака ответ может получиться ошибочным.

Примеры

В качестве примера можно привести равноускоренное и равнозамедленное движение. Равноускоренное движение характеризуется, как известно, разгоном тела. Ускорение остается постоянным, но скорость непрерывно увеличивается в каждый отдельный момент времени. А при равнозамедленном движении ускорение имеет отрицательное значение, скорость тела непрерывно снижается. Эти два вида ускорения заложены в основу многих физических задач и достаточно часто встречаются в задачах первой части тестов по физике.

Пример равноускоренного движения

Равноускоренное движение мы встречаем ежедневно повсеместно. Ни один автомобиль не движется в реальной жизни равномерно. Даже если стрелка спидометра показывает ровно 6 километров в час, следует понимать, что это на самом деле не совсем так. Во-первых, если разбирать данный вопрос с технической точки зрения, то первым параметром, который будет давать неточность, станет прибор. Вернее, его погрешность.

Их мы встречаем во всех контрольно-измерительных приборах. Те же самые линейки. Возьмите штук десять хоть одинаковых (по 15 сантиметров, например) линеек, хоть разных (15, 30, 45, 50 сантиметров). Приложите их друг к другу, и вы заметите, что есть небольшие неточности, а их шкалы не совсем совпадают. Это и есть погрешность. В данном случае она будет равна половине цены деления, как и у других приборов, выдающих определенные значения.

Вторым фактором, который будет давать неточность, является масштаб прибора. Спидометр не учитывает такие величины, как половина километра, одна вторая километра и так далее. Заметить на приборе это глазом достаточно тяжело. Практически невозможно. Но ведь изменение скорости есть. Пускай на такую маленькую величину, но все же. Таким образом, это будет равноускоренное движение, а не равномерное. То же самое можно сказать и про обычный шаг. Идем, допустим, мы пешком, и кто-то говорит: наша скорость - 5 километров в час. Но это не совсем так, а почему, было рассказано немного выше.

Ускорение тела

Ускорение может быть положительным и отрицательным. Об этом говорилось ранее. Добавим, что ускорение - это векторная величина, которая числено равна изменению скорости за определенный промежуток времени. То есть через формулу его можно обозначить следующим образом: a = dV/dt, где dV - изменение скорости, dt - промежуток времени (изменение времени).

Нюансы

Сразу может возникнуть вопрос о том, как ускорение при таком раскладе может быть отрицательным. Те люди, которые задают подобный вопрос, мотивируют это тем, что даже скорость не может быть отрицательной, не то что время. На самом деле время отрицательным быть действительно не может. Но очень часто забывают о том, что скорость принимать отрицательные значения вполне может. Это же векторная величина, не следует забывать об этом! Все дело, наверное, в стереотипах и некорректном мышлении.

Так вот, для решения задач достаточно уяснить одну вещь: ускорение будет положительным в том случае, если тело разгоняется. И оно будет отрицательным в том случае, если тело тормозит. Вот и все, достаточно просто. Простейшее логическое мышление или способность видеть между строк уже будет, по сути дела, частью решения физической задачи, связанной со скоростью и ускорением. Частный случай - это ускорение свободного падения, и оно не может быть отрицательным.

Формулы. Решение задач

Следует понимать, что задачи, связанные со скоростью и ускорением, бывают не только практического, но и теоретического характера. Поэтому мы будем разбирать их и по возможности постараемся объяснить, почему тот или иной ответ правильный или, наоборот, неправильный.

Теоретическая задача

Очень часто на экзаменах по физике в 9 и 11 классах можно встретить подобные вопросы: "Как будет вести себя тело, если сумма всех действующих на него сил равна нулю?". На самом деле формулировка вопроса может быть самой разной, но ответ все равно один. Здесь первым делом в ход нужно пускать поверхностные здания и обыкновенное логическое мышление.

На выбор ученика предоставляется 4 ответа. Первый: “скорость будет равна нулю”. Второй: “скорость тела убывает в течение некоторого периода времени”. Третий: “скорость тела постоянна, но она точно не равна нулю”. Четвертый: “скорость может иметь любое значение, но в каждый момент времени она будет постоянной”.

Правильным ответом здесь будет, конечно же, четвертый. Сейчас разберемся, почему именно так. Давайте попробуем рассмотреть все варианты по очереди. Как известно, сумма всех сил, действующих на тело, есть произведение массы на ускорение. Но масса у нас остается величиной постоянной, ее мы отбросим. То есть если сумма всех сил равна нулю, ускорение тоже будет равно нулю.

Итак, предположим, что скорость будет равна нулю. Но этого не может быть, поскольку нулю у нас равно ускорение. Чисто физически это допустимо, но только не в данном случае, поскольку сейчас речь идет о другом. Пускай скорость тела убывает в течение некоторого периода времени. Но как она может убывать, если ускорение постоянно, и оно равно нулю? Никаких причин и предпосылок для убывания или возрастания скорости нет. Поэтому второй вариант мы отметаем.

Предположим, что скорость тела постоянна, но она точно не равна нулю. Она действительно будет постоянной в силу того, что ускорение просто-напросто отсутствует. Но нельзя однозначно сказать, что скорость будет отлична от нулевой. А вот четвертый вариант - прямо в яблочко. Скорость может быть любой, но, поскольку ускорение отсутствует, она будет постоянной во времени.

Практическая задача

Определите, какой путь был пройден телом в определенный период времени t1-t2 (t1 = 0 секунд, t2 = 2 секунды), если имеются следующие данные. Начальная скорость тела на отрезке от 0 до 1 секунды равна 0 метров в секунду, конечная - 2 метра в секунду. Скорость тела по состоянию на время 2 секунды равна также 2 метрам в секунду.

Решить подобную задачу достаточно просто, нужно лишь уловить ее суть. Итак, требуется найти путь. Ну что же, начнем искать его, предварительно выделив два участка. Как легко заметить, первый участок пути (от 0 до 1 секунды) тело проходит равноускоренно, о чем свидетельствует увеличение его скорости. Тогда найдем это ускорение. Его можно выразить как разность скоростей, разделенную на время движения. Ускорение будет равно (2-0)/1 = 2 метра на секунду в квадрате.

Соответственно, расстояние, пройденное на первом участке пути S будет равно: S = V0t + at^2/2 = 0*1 + 2*1^2/2 = 0 + 1 = 1 метр. На втором же участке пути в период от 1 секунды до 2 секунд тело движется равномерно. Значит, расстояние будет равно V*t = 2*1 = 2 метра. Теперь суммируем расстояния, получаем 3 метра. Это и есть ответ.

>>Физика: Скорость при равноускоренном движении

Теория равноускоренного движения была разработана знаменитым итальянским ученым Галилео Галилеем. В своей книге "Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к Механике и Местному движению", вышедшей в 1638 г., Галилей впервые дал определение равноускоренного движения и доказал ряд теорем, в которых описывались его закономерности.

Приступая к изучениюравноускоренного прямолинейного движения , выясним сначала, как находится скорость тела, если известны ускорение этого тела и время движения.
При начальной скорости, равной нулю (V 0 = 0),
V = at (3.1)
Эта формула показывает, что для нахождения скорости тела через время I после начала движения надо ускорение тела умножить на время движения.
В противоположном случае, когда тело совершает замедленное движение и в конце концов останавливается (V = 0), формула ускорения позволяет найти начальную скорость тела:
V 0 = at (3.2)

Наглядную картину того, как изменяется скорость тела в процессе равноускоренного движения, можно получить, построив график скорости .

Графики скорости впервые были введены в середине XIV в. францисканским ученым-монахом Джиованни ди Казалисом и архидьяконом Руанского собора Никола Оремом, ставшим впоследствии советником французского короля Карла V. По горизонтальной оси они предложили откладывать время, а по вертикальной оси - скорость. В такой системе координат графики скорости при равноускоренном движении имеют вид прямых линий, наклон которых показывает, как быстро изменяется скорость с течением времени.

Формуле (3.1), описывающей движение с возрастающей скоростью, соответствует, например, график скорости, изображенный на рисунке 5. График, изображенный на рисунке 6, соответствует движению с уменьшающейся скоростью.

При равноускоренном движении скорость тела непрерывно изменяется. Графики скорости позволяют определить скорость тела в различные моменты времени. Но иногда бывает нужно знать не скорость в тот или иной конкретный момент времени (такую скорость называют мгновенной ), а среднюю скорость движения на всем пути.

Задачу о нахождении средней скорости при равноускоренном движении впервые удалось решить Галилею. В своих исследованиях он использовал графический метод описания движения.

Согласно теории Галилея, если скорость тела при равноускоренном движении увеличивается от 0 до некоторого значения V , то средняя скорость движения будет равна половине достигнутой скорости:

Аналогичная формула справедлива и для движения с уменьшающейся скоростью. Если она уменьшается от некоторого начального значения V 0 до 0, то средняя скорость такого движения оказывается равной

Полученные результаты можно проиллюстрировать с помощью графика скорости. Так, например, для нахождения средней скорости движения, которому соответствует график на рисунке 5, мы должны найти половину от 6 м/с. В результате получаем 3 м/с. Это и есть средняя скорость рассматриваемого движения.

1. Кто является автором первой теории равноускоренного движения? 2. Как находится скорость тела при равноускоренном движении из состояния покоя? 3. Используя график, изображенный на рисунке 5, определите скорость тела через 2 с после начала движения. 4. Используя график, изображенный на рисунке 6, определите среднюю скорость движения тела.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Основы физики, онлайн уроки физики, программа с физики, рефераты с физики, учебники по физике, физика в школе, тесты с физики, учебные программы по физике

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Графическое представление равноускоренного прямолинейного движения.

Перемещение при равноускоренном движении.

I уровень.

Многие физические величины, описывающие движения тел, с течением времени изменяются. Поэтому для большей наглядности описания движение часто изображают графически.

Покажем, как графически изображаются зависимости от времени кинематических величин, описывающих прямолинейное равноускоренное движения.

Равноускоренное прямолинейное движение - это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, т. е. это движение с постоянным по модулю и направлению ускорением.

a=const - уравнение ускорения. Т. е а имеет численное значение, которое не изменяется со временем.

По определению ускорения

Отсюда мы уже нашли уравнения для зависимости скорости от времени: v = v0 + at.

Посмотрим, как это уравнение можно использовать для графического представления равноускоренного движения.

Изобразим графически зависимости кинематических величин от времени для трех тел

.

1 тело движется вдоль оси 0Х, при этом увеличивает свою скорость (вектор ускорения а сонаправленн с вектором скорости v). vx >0, ах > 0

2 тело движется вдоль оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx >0, ах < 0

2 тело движется против оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx < 0, ах > 0

График ускорения

Ускорение по определению величина постоянная. Тогда для представленной ситуации график зависимости ускорения от времени a(t) будет иметь вид:

Из графика ускорения можно определить как изменялась скорость – увеличивалась или уменьшалась и на какое численное значение изменилась скорость и у какого тела скорость больше изменилась.

График скорости

Если сравнить зависимость координаты от времени при равномерном движении и зависимость проекции скорости от времени при равноускоренном движении, можно увидеть, что эти зависимости одинаковы:

х= х0 + vx t vx = v 0 x + a х t

Это значит, что и графики зависимостей имеют одинаковый вид.

Для построения этого графика на оси абсцисс откладывают время движения, а на оси ординат - скорость (проекцию скорости) тела. В равноускоренном движении скорость тела с течением времени изменяется.

Перемещение при равноускоренном движении.

При равноускоренном прямолинейном движении скорость тела определяется формулой

vx = v 0 x + a х t

В этой формуле υ0 – скорость тела при t = 0 (начальная скорость ), a = const – ускорение. На графике скорости υ (t ) эта зависимость имеет вид прямой линии (рис.).

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. для графика I. Ускорение численно равно отношению сторон треугольника ABC : MsoNormalTable">

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ0 = –2 м/с, a = 1/2 м/с2.

Для графика II: υ0 = 3 м/с, a = –1/3 м/с2.

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t . Выделим на оси времени некоторый малый промежуток времени Δt . Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt . Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt . Это перемещение равно площади заштрихованной полоски (рис.). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt , получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF . Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

Так как υ – υ0 = at , окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде:

Для нахождения координаты y тела в любой момент времени t y t : https://pandia.ru/text/78/516/images/image008_63.gif" width="84" height="48 src=">

Для нахождения координаты x тела в любой момент времени t нужно к начальной координате x 0 прибавить перемещение за время t :

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a . Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t . Результат записывается в виде

Если начальная скорость υ0 равна нулю, эти формулы принимают вид MsoNormalTable">

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0, υ, s , a , y 0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

Пример решения задачи:

Петя съезжает со склона горы из состояния покоя с ускорением 0,5 м/с2 за 20 с и дальше движется по горизонтальному участку. Проехав 40 м, он врезается в зазевавщегося Васю и падает в сугроб, снизив свою скорость до 0м/с. С каким ускорением двигался Петя по горизонтальной поверхности до сугроба? Какова длина склона горы, с которой так неудачно съехал Петя?

Дано :

a 1 = 0,5 м/с2

t 1 = 20 с

s 2 = 40 м

Движение Пети состоит из двух этапов: на первом этапе, спускаясь со склона горы, он движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается до нуля (столкнулся с Васей). Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапу с индексом 2.

1 этап.

Уравнение для скорости Пети в конце спуска с горы:

v 1 = v 01 + a 1t 1.

В проекциях на ось X получим:

v 1x = a 1x t .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения Пети на первом этапе движения:

или т. к. Петя ехал с самого верха горки с начальной скоростью V01=0

(на месте Пети, я бы поостереглась ездить с таких высоких горок)

Учитывая, что начальная скорость Пети на этом 2 этапе движения равна его конечной скорости на первом этапе:

v 02 x = v 1 x , v 2x = 0, где v1 – скорость с которой Петя достиг подножия горки и начал двигаться к Васе. V2x - скорость Пети в сугробе.

Используем уравнение и найдем скорость v1

На горизонтальним участе дороги путь Пети рамен:

НО!!! целесообразнее воспользоваться другим уравнением, т. к. нам не известно время жвижения Пети до Васи t2

Ускорение получиться отрицательным – это значит, что Петя очень старался затормозить не об Васю, а несколько раньше.

Ответ: a 2 = -1,25 м/с2; s 1 = 100 м.

II уровень. Письменно решить задачи.

1. По графикам, изображенным на рисунке, записать уравнения зависимости скорости от времени. Как двигались тела на каждом этапе своего движения(сделать по образцу см. пример).

2. По данному графику ускорения расскажите как меняется скорость тела. Запишите уравнения зависимости скорости от времени, если на момент начала движения (t=0) скорость тела v0х =0. Обратите внимание, что каждый последующий участок движения, тело начинает проходить с уже какой-либо скоростью (которая была достигнута за предыдущее время!).

3. Поезд метро, отходя от станции, может развить скорость 72 км/ч за 20 с. Определить с каким ускорением удаляется от вас сумка, забытая в вагоне метро. Какой путь при этом она проедет?

4. Велосипедист, движущийся со скоростью 3 м/с, начинает спускаться с горы с ускорением 0,8 м/с2. Найдите длину го­ры, если спуск занял 6 с.

5. Начав торможение с ускорением 0,5 м/с2, поезд прошел до остановки 225 м. Какова была его скорость перед началом торможения?

6. Начав двигаться, футбольный мяч достиг скорости 50 м/с, пройдя путь 50 м и врезался в окно. Определите время, за которое мяч прошел этот путь, и ускорение, с которым он двигался.

7. Время реакции соседа дяди Олега = 1,5 мин, за это время он сообразит, что случилось с его окном и успеет выбежать во двор. Определите какую скорость должны развить юные футболисты, что бы радостные владельцы окна их не догнали, если до своего подъезда им нужно бежать 350 м.

8. Два велосипедиста еду навстречу друг другу. Первый, имея скорость 36 км/ч, начал подниматься в гору с ускоре­нием 0,2 м/с2, а второй, имея скорость 9 км/ч, стал спус­каться с горы с ускорением 0,2 м/с2. Через сколько времени и в каком месте они столкнуться из-за своей рассеянности, если длина горы 100 м?

В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению , неравномерное движение - это движение с неодинаковой скоростью, по любой траектории . В чем особенность равноускоренного движения? Это неравномерное движение, но которое "равно ускоряется" . Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово "равно", получим равное увеличение скорости. А как понимать "равное увеличение скорости", как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.


Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую - 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью - замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

Равноускоренное движение - это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

Ускорение тела

Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение - это физическая векторная величина , численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй - 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды - 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.


Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Формула записана не в векторном виде, поэтому знак "+" пишем, когда тело ускоряется, знак "-" - когда замедляется.

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках


На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.


На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на "-2м/с". 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком "минус"!!!

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах


Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

1) Что такое равноускоренное движение;
2) Что характеризует ускорение;
3) Ускорение - вектор. Если тело разгоняется ускорение положительное, если замедляется - ускорение отрицательное;
3) Направление вектора ускорения;
4) Формулы, единицы измерения в СИ

Упражнения

Два поезда идут навстречу друг другу: один - ускоренно на север, другой - замедленно на юг. Как направлены ускорения поездов?

Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго - противоположное движению (он замедляется).



Понравилась статья? Поделиться с друзьями: