Реакция нейтрализации определение. Реакция нейтрализации. Реакция нейтрализации в медицине

Реакция нейтрализации считается одной из важнейших для кислот и оснований. Именно это взаимодействие предполагает образование воды в качестве одного из продуктов реакции.

Механизм

Проанализируем уравнение реакции нейтрализации на примере взаимодействия гидроксида натрия с соляной (хлороводородной) кислотой. Катионы водорода, образующиеся в результате диссоциации кислоты, связываются с гидроксид-ионами, которые образуются при распаде щелочи (гидроксида натрия). В итоге между ними протекает реакция нейтрализации

H+ + OH- → H 2 O

Характеристика химического эквивалента

Кислотно-основное титрование взаимосвязано с нейтрализацией. Что такое титрование? Это способ вычисления имеющейся массы основания либо кислоты. Он предполагает измерение количества щелочи либо кислоты с известной концентрацией, которое необходимо брать для полной нейтрализации второго реагента. Любая реакция нейтрализации предполагает применение такого термина как «химический эквивалент».

Для щелочи это то количество основания, которое в случае полной нейтрализации образует один моль гидроксид ионов. Для кислоты химический эквивалент определяется количеством, выделяемым при нейтрализации 1 моль катионов водорода.

Реакция нейтрализации протекает в полном объеме в том случае, если в исходной смеси находится равное количество химических эквивалентов основания и кислоты.

Грамм-эквивалентом считается масса основания (кислоты) в граммах, которые способны образовывать один моль гидроксид-ионов (катионов водорода). Для одноосновной кислоты (азотной, соляной), которые при распаде молекулы на ионы высвобождают по одному катиону водорода, химический эквивалент аналогичен количеству вещества, а 1 грамм-эквивалент соответствует молекулярной массе вещества. Для двухосновной серной кислоты, образующей в процессе электролитической диссоциации два катиона водорода, один моль соответствует двум эквивалентам. Поэтому в кислотно-основном взаимодействии ее грамм-эквивалент равен половине относительной молекулярной массы. Для трехосновной фосфорной кислоты при полной диссоциации, образующей три катиона водорода, один грамм-эквивалент будет равен трети относительной молекулярной массы.

Для оснований принцип определения аналогичен: грамм-эквивалент зависит от валентности металла. Так, для щелочных металлов: натрия, лития, калия - искомая величина совпадает с относительной молекулярной массой. В случае расчета грамм-эквивалента гидроксида кальция, данная величина будет равна половине относительной молекулярной массы гашеной извести.

Пояснение механизма

Попробуем понять, что представляет собой реакция нейтрализации. Примеры такого взаимодействия можно взять разные, остановимся на нейтрализации азотной кислоты гидроксидом бария. Попробуем определить массу кислоты, в которой нуждается реакция нейтрализации. Примеры расчетов приведем ниже. Относительная молекулярная масса азотной кислоты составляет 63, а гидроксида бария 86. Определяем число грамм-эквивалентов основания, содержащегося в 100 граммах. 100 г делим на 86 г/экв и получаем 1 эквивалент Ba(OH) 2 . Если рассматривать данную проблему через химическое уравнение, то можно составить взаимодействие следующим образом:

2HNO 3 + Ba(OH) 2 → Ba(NO 3) 2 + 2H 2 O

По уравнению отчетливо видна вся химия. Реакция нейтрализации здесь протекает полностью в том случае, когда два моль кислоты вступают в реакцию с одним моль основания.

Особенности нормальной концентрации

Ведя речь о нейтрализации, часто используют нормальную концентрацию основания или щелочи. Что представляет собой данная величина? Нормальность раствора демонстрирует то количество эквивалентов искомого вещества, которое существует в одном литре его раствора. С ее помощью проводят количественные вычисления в аналитической химии.

Например, если нужно определить нормальность и молярность 0,5 литра раствора, полученного после растворения 4 граммов гидроксида натрия в воде, сначала необходимо определить относительную молекулярную массу гидроксида натрия. Она составит 40, молярная масса будет 40 г/моль. Далее определяем количественное содержание в 4 граммах вещества, для этого делим массу на молярную, то есть, 4 г:40 г/моль, получаем 0,1 моль. Поскольку молярная концентрация определяется отношением количества моль вещества к общему объему раствора, можно вычислить молярность щелочи. Для этого 0,1 моль делим на 0,5 литра, в итоге получаем 0,2 моль/л, то есть, 0,2 М щелочи. Так как основание является однокислотным, его молярность численно равна нормальности, то есть соответствует 0,2 н.

Заключение

В неорганической и органической химии реакция нейтрализации, протекающая между кислотой и основанием, имеет особое значение. Благодаря полной нейтрализации исходных компонентов происходит реакция ионного обмена, полноту которой можно проверить с помощью индикаторов на кислую и щелочную среду.

Взаимодействие кислоты и основания с образованием соли и воды называется реакцией нейтрализации. Обычно подобные реакции протекают с выделением тепла.

Общее описание

Суть нейтрализации состоит в том, что кислота и основание, обмениваясь активными частями, нейтрализуют друг друга. В результате образуется новое вещество (соль) и нейтральная среда (вода).

Простым и наглядным примером реакции нейтрализации является взаимодействие соляной кислоты и гидроксида натрия:

HCl + NaOH → NaCl + H 2 O.

Если опустить лакмусовую бумажку в раствор соляной кислоты и гидроксида натрия, то она окрасится в фиолетовый цвет, т.е. покажет нейтральную реакцию (красный - кислая среда, синий - щелочная среда).

Раствор двух активных соединений превратился в воду за счёт обмена натрием и хлором, поэтому ионное уравнение данной реакции выглядит следующим образом:

H + + OH - → H 2 O.

После нагревания получившегося раствора вода испарится, а в пробирке останется поваренная соль - NaCl.

Рис. 1. Образование соли после выпаривания.

В подобных реакциях вода - обязательный продукт.

Примеры

Реакция нейтрализации может происходить между сильными и слабыми кислотами и щелочами. Рассмотрим два типа реакций:


Урок посвящен изучению реакции между противоположными по свойствам веществами - кислотами и основаниями. Такие реакции называют реакциями нейтрализации. В ходе урока вы научитесь по формуле соли составлять ее название, и по названию соли записывать ее формулу.

Тема: Классы неорганических веществ

Урок: Реакция нейтрализации

Если смешать одинаковые количества соляной кислоты и гидроксида натрия, то образуется раствор, в котором среда будет нейтральной, т.е. в нем не будет присутствовать ни кислота, ни щелочь. Запишем уравнение реакции между соляной кислотой и гидроксидом натрия, если в результате образуются хлорид натрия и вода.

При взаимодействии 1 моль хлороводорода (HCl) и 1 моль гидроксида натрия (NaOH) образуется 1 моль хлорида натрия (NaCl) и 1 моль воды (Н 2 О). Обратите внимание, в процессе данной реакции два сложных вещества обмениваются своими составными частями и образуются два новых сложных вещества:

NaOH+HCl=NaCl+H 2 O

Реакции, в ходе которых два сложных вещества обмениваются своими составными частями, называют реакциями обмена .

Частный случай реакции обмена – реакция нейтрализации.

Реакция нейтрализации - это взаимодействие кислоты с основанием.

Схема реакции нейтрализации: ОСНОВАНИЕ + КИСЛОТА = СОЛЬ + ВОДА

Нерастворимые в воде основания тоже могут растворяться в растворах кислот. В результате этих реакций образуются соли и вода. Уравнение реакции взаимодействия гидроксида меди (II) с серной кислотой:

Cu(OH) 2 +H 2 SO 4 = CuSO 4 + 2H 2 O

Вещество с химической формулой CuSO 4 относится к классу солей. Формулу этой соли мы составили, зная, что валентность меди в данном процессе равна II, и валентность SO 4 тоже равна II. А вот как назвать это вещество?

Название соли состоит из двух слов: первое слово – название кислотного остатка (эти названия приведены в таблице в учебнике, их надо выучить), а второе слово – название металла. Если валентность металла переменная, то она указывается в скобках.

Итак, вещество с химической формулой CuSO 4 называется сульфат меди(II).

NaNO 3 – нитрат натрия;

K 3 PO 4 – фосфат (ортофосфат) калия.

А теперь, выполним обратное задание: составим формулу соли по ее названию. Составим формулы следующих солей: сульфата натрия; карбоната магния; нитрата кальция.

Чтобы правильно составить формулу соли, сначала запишем символ металла и формулу кислотного остатка, сверху укажем их валентности. Найдем НОК значений валентностей. Разделив НОК на каждое из значений валентности, найдем число атомов металла и число кислотных остатков.

Обратите внимание, что если кислотный остаток состоит из группы атомов, то при написании формулы соли формула кислотного остатка записывается в скобках, а число кислотных остатков обозначается за скобкой соответствующим индексом.

1. Сборник задач и упражнений по химии: 8-й кл.: к учеб. П.А. Оржековского и др. «Химия. 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006. (с.106)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.107-108)

3. Химия. 8 класс. Учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.:Астрель, 2013. (§33)

4. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005. (§39)

5. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§§31,32)

6. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

2. Индикаторы в реакциях нейтрализации. Титрование ().

Домашнее задание

1) с. 107-108 №№ 4,5,7 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

2) с.188 №№ 1,4 из учебника П.А. Оржековского, Л.М. Мещеряковой, М.М. Шалашовой «Химия: 8кл.», 2013 г.

Реакции нейтрализации (процесс взаимодействия кислоты и основания) сопровождаются тепловым эффектом. В результате получается соль и вода. Реакции нейтрализации протекают необратимо только в случае нейтрализации сильных кислот сильными основаниями.

например:

K + + OH - + H + + Cl - = K + + Cl - + H 2 O

Необратимость таких реакций обусловлена тем, что в образующихся системах единственным и весьма малодиссоциированным соединением является вода. Ионная форма уравнения в этом случае имеет вид.

Н + + ОН - = Н 2 О

Исключение составляют такие реакции, которые сопровождаются кроме воды образованием трудно растворимого соединения, например:

Ва 2+ + 2ОН - + 2Н + + SO 4 2- =  ВаSO 4 + 2H 2 O

При этом, если в реакции участвуют строго эквивалентные коли­чества сильной кислоты и сильной щелочи, то концентрации ионов Н + и ОН - сохраняют значения такие же как и в воде, т.е. среда становится нейтральной. Установлено, что при нейтрализации одного эквивалента сильной кислоты (щелочи) одним эквивалентом сильной щелочи (кислоты) выделяется всегда 57,22 кДж (13,7ккал). Например:

NаОН + НСl -= NаСl + Н 2 О, H= - 13,7 ккал

Это происходит потому, что реакция нейтрализации сильной кислоты (щелочи) сильной щелочью (кислотой) всегда будет сопровождаться реакцией образования воды, а теплота образования одного моля вода из ионов равна 57,22 кДж (13,7 ккал).

При нейтрализации слабой кислоты (щелочи) сильной щелочью (кислотой) будет выделяться больше или меньше,чем 57,22 кДж (13,7 ккал) количества тепла (приложение табл. I).

Примеры других типов реакции нейтрализации

    слабой кислоты сильным основанием:

СН 3 СООН + КОН  СН 3 СОOK +Н 2 О

СН 3 СООН + ОН -  СН 3 СОO - +Н 2 O

    слабого основания сильной кислотой:

NН 4 ОН + НNО 3  NH 4 NО 3 + Н 2 О

NН 4 ОН +Н +  NH 4 + +Н 2 О

3) слабого основания слабой кислотой:

NН 4 OН +СН 3 СООН  СН 3 СООNH 4 +Н 2 O

NН 4 OН +СН 3 СООН  NH 4 + + СН 3 СОО - + Н 2 O

В образующихся системах равновесие сильно смещено вправо, т.е. в сторону образования воды, но не до конца, так как вода в них не единственное малодиссоциированное вещество.

При строго эквивалентных количествах, первая система имеет слабощелочную, вторая - слабокислую, а третья - нейтраль­ную реакции. В последнем случае нейтральность системы не означает, что эта реакция протекает необратимо, а является следствием ра­венства констант диссоциации NН 4 OН и уксусной кислоты.

Задание

Опыт 1.

Нейтрализация серной кислоты едким натром в две стадии.

1) в калориметр отмерить 50мл одномолярного растворасер­ной кислоты Н 2 S0 4 ;

2) измерить температуру раствора кислоты t 1 в калоримет­ре;

3) быстро (и без потерь) влить в кислоту 25 мл двумолярного раствора щело­чи NaOH из сосуда и осторожно перемешать полученный раствор кислой соли NаHS0 4 (объем V1);

4) определить температуру t 2 раствора после реакции, которая протекает по уравнению:

H 2 SO 4 + NaOH = NaНSO 4 + H 2 O H 1 = ? (1)

где H 1 - теплота реакции;

5) определить разность температур t 1 = t 2 – t 1 и объем V 1 полученного раствора;

6) к полученному раствору NaНSO 4 быстро прилить оставшиеся 25 мл раствора щелочи, перемешать и определить температуру раствора t 3 . В данном случае кислая соль превращается в среднюю по реакции:

NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O H 2 = ? (2)

где H 2 - теплота реакции;

7) определить разность температур t 2 = t 3 – t 2 и объем V 2 полученного раствора;

8) результаты опыта занести в табл. 1;

Таблица 1

________________________________________________________________

| 50 | 25 | t 1 | 1.09 (V1) | 5.02 (V1) | H 1 |

| | 25 | t 2 | 1.12 (V2) | 6.28 (V) | H 2 |

|________________________________________________________________|

Опыт 2.

Нейтрализация серной кислоты едким натром в одну стадию.

Проводить опыт в следующем порядке:

1) в калориметр отмерить 50мл одномолярного растворасер­ной кислоты Н 2 S0 4 ;

2) измерить температуру раствора кислоты t 4 в калоримет­ре;

3) быстро (и без потерь) влить в кислоту 50 мл двумолярного раствора щело­чи NaOH из сосуда и осторожно перемешать полученный раствор средней соли Nа 2 S0 4 ;

4) определить температуру t 5 раствора реакции полной нейтрализации,

H 2 SO 4 + 2 NaOH = Na 2 SO 4 + 2 H 2 O: H 3 (3)

где H 3 - теплота реакции;

5) определить разность температур t 3 = t 5 – t 4 и объем V 3 полученного раствора;

6) результаты опыта занести в табл. 2;

Таблица 2 ___

_____________________________________________________________

| Объем раствора, мл | Разность | Плотность | Теплоемкость | Наблюдаемая |

|__________________|темпера- | раствора, | Дж/(г.К) | теплота, |

| H 2 SO 4 | NaOH | тур,  С | г/моль | | кДж/моль |

|________________________________________________________________|

| 50 | 50 | t 3 | 1.12 | C3 = 6.28 | H 3 |

|________________________________________________________________|

9) вычислить энтальпию (H 1 , H 2 ,H 3) реакции нейтра­лизации по формуле:

10) вычислить суммарную теплоту H 1 + H 2 реакции ней­трализации;

11) сравнить значение суммарной теплоты реакции H 1 + H 2 со значением H 3 и сделать соответствующие выводы;

12) вычислить абсолютную и относительную ошибки определения теплоты реакции (3);

13) записать уравнение реакции (1, 2 и 3) в виде термохимических уравнений.

Результаты работы

Проведем опыт нейтрализации серной кислоты едким натром в две стадии

Таблица 1

Проведем опыт нейтрализации серной кислоты едким натром в одну стадию

по схеме описанной выше, а результаты измерений занесем в таблицу.

Таблица 2

Вычислим энтальпию (H 1 , H 2 ,H 3) реакции нейтра­лизации по формуле:

H = V * d * C * t * 10 * 0.001,

где H - соответствующая теплота реакции; V - объем полученного раствора соли, мл; d - плотность данного раст­вора, г/см 3 ; С - удельная теплоемкость раствора, Дж(ккал); t - соответствующая разность наблюдаемых температур до реак­ции и после реакции, °С; 10 - коэффициент пересчета теплоты реак­ции на один эквивалент, взятой для нейтрализации кислоты; 0,001 - коэффициент пересчета, кДж (ккал);

H 1 = 75 * 1.09 * 5.02 * * 10 * 0.001 = 40.92 кДж

H 2 = 100 * 1.12 * 6.28 * * 10 * 0.001 = 19.06 кДж

H 3 = 100 * 1.12 * 6.28 * * 10 * 0.001 = 60.77 кДж

Вычислим суммарную теплоту H 1 + H 2 реакции ней­трализации:

H 1 H 2 = 59.98 кДж

Сравнивая значение суммарной теплоты реакции H 1 + H 2 со значением H 3 видим, что они практически равны. Этот говорит о том, что тепловой эффект химической реакции, протекающей при постоянном давлении или при постоянном объеме, не зависит от пути реакции, а зависит только от природы исходных и конечных веществ и их состояния (закон Гесса).

Вычислим абсолютную и относительную ошибки определения теплоты реакции (3).

Стандартная теплота образования моля воды составляет H 0 = 57,22 кДж.

Абсолютная погрешность определения теплоты реакции:

|H 3 -H 0 | = |60,77 – 57,22| = 3,55 кДж.

Относительная погрешность определения теплоты реакции:

|H 3 -H 0 | /H 0 = 3,55/57,22 = 6,2 %

Запишем уравнения реакций (1, 2 и 3) в виде термохимических уравнений:

H 2 SO 4 + NaOH = NaНSO 4 + H 2 O, H 1 = 41 кДж;

NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O, H 2 = 19 кДж;

H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O, H 3 = 61 кДж.

Вывод по работе

Основной принцип, на котором основываются все термохимические расчеты, установлен в 1840г русским химиком, академиком Г И Гессом. Этот принцип, известный под названием закона Гесса и являющейся частным случаем закона сохранения энергии, можно сформулировать так «Тепловой эффект реакции за- висит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. И это мы доказали при приготовлении раствора сульфата натрия из растворов серной кислоты гидроксида натрия двумя способами.

Итог:

Согласно закону Гесса, тепловой эффект в обоих случаях один и тот же.

В рассмотренных до сих пор протолитических взаимодейст­виях (ионизация слабых электролитов и гидролиз ионов солей) обязательным компонентом являлась вода, молекулы которой, проявляя свойства амфолита, выступали или донором, или ак­цептором протона, обеспечивая протекание указанных взаимо­действий. Теперь рассмотрим непосредственное взаимодействие кислот и оснований между собой, т. е. реакции нейтрализации.

Реакцией нейтрализации называется протолитическое взаимодействие кислоты и основания, в результате которого образуется соль и вода.

В зависимости от силы участвующих кислоты и основания реакция нейтрализации может быть практически необратимой или обратимой в разной степени.

При взаимодействии любой сильной кислоты с любым силь­ным основанием (щелочью) из-за того, что эти реагенты полно­стью диссоциированы на ионы, сущность такой реакции неза­висимо от природы реагентов выражается одним и тем же молекулярно-ионным уравнением:

В процессе нейтрализации сильной кислоты щелочью про­исходит изменение рН системы, соответствующее кривой ней­трализации, приведенной на рис. 8.1. Кривая нейтрализации в этом случае характеризуется большим и резким скачком рН вблизи состояния эквивалентности (Vэкв)- Середина этого скачка соответствует точке эквивалентности, в которой [Н + ] = [ОН-] = = 1 10 -7 моль/л, т. е. рН = 7.

Характерными особенностями реакции нейтрализации силь­ной кислоты щелочью и наоборот являются:

Необратимость;

Экзотермичность ( Н 0 = -57,6 кДж/моль);

Очень большая скорость, так как взаимодействуют только подвижные ионы Н + и ОН-;

Скачок рН при нейтрализации большой и резкий;

Точка эквивалентности при рН = 7.

Эти особенности реакции нейтрализации между сильными кислотами и основаниями обеспечили широкое использование ее в аналитической практике для количественного определения кислот и оснований в исследуемых объектах.

Наиболее общим случаем реакции нейтрализации является взаимодействие кислот и оснований, различающихся по силе. Рассмотрим нейтрализацию слабой кислоты НА сильным ос­нованием (щелочью):

Поскольку НА и Н 2 0 - слабые электролиты, то имеет место протолитическое равновесие из-за конкуренции за протон ме­жду сильными основаниями ОН- и А- и, следовательно, для дан­ной реакции нейтрализации будут характерны следующие осо­бенности:

Обратимость;

Скачок рН при нейтрализации небольшой и менее резкий (рис. 8.2), причем с уменьшением силы кислоты он уменьшает­ся и сглаживается;

Точка эквивалентности находится при рН > 7, так как в системе протекает реакция гидролиза по аниону с образованием анионов ОН-, которых тем больше, чем слабее кислота;

V Э KB), когда добавле­но 50 % щелочи и [НА] = [А-], значение рН в системе численно равно значению рК а данной слабой кислоты.

Последнее положение следует из уравнения: рН = рК а + lg ([А-]/[НА]), согласно которому при [А - ] = [НА] рН = рК а (так как lg ([А-]/[НА]) = 0). Это обстоятельство позволяет не только определять величину рК а слабой кислоты, но и решать обрат­ную задачу: по значению рК а определять, какая слабая кислота находится в системе.


Реакции нейтрализации различных по силе оснований сильной кислотой (рис. 8.3) характеризуются особенностями равновесных протолитических процессов, аналогичными приведенным выше. Однако нужно понять и запомнить, что для нейтрализации слабых оснований характерны следующие особенности:

-
точка эквивалентности находится при рН < 7 из-за проте­кающей параллельно реакции гидролиза по катиону с образо­ванием катионов Н + ;

В состоянии полунейтрализации (1/2 V Э KB), когда добавлено 50 % кислоты и [В] = [ВН + ], значение рН в системе численно равно значению рK а (ВН +) сопряженной кислоты данного слабо­го основания.

Таким образом, исследование реакции нейтрализации по­зволяет определять не только содержание кислот и оснований в системе, но и значение рК а слабых электролитов, включая и белки, а также их изоэлектрические точки.



Понравилась статья? Поделиться с друзьями: