Основные положения клеточной теории кратко и понятно. Клеточная теория: развитие и положения. В свою очередь эндоцитоз подразделяется на

Научная теория представляет собой обобщение научных данных об объекте исследования. Это в полной мере касается клеточной теории , созданной немецкими исследователями М. Шлейденом и Т. Шванном в 1839 г.

В основу клеточной теории легли работы многих исследователей, искавших элементарную структурную единицу живого. Созданию и развитию клеточной теории способствовало возникновение в XVI в. и дальнейшее развитие микроскопии.

Основные события – предшественники создания клеточной теории:
– 1590 г. – создание первого микроскопа (братья Янсен);
– 1665 г. Роберт Гук – первое описание микроскопической структуры пробки ветки бузины (на самом деле это были клеточные стенки, но Гук ввел название «клетка»);
– 1695 г. – публикация А. Левенгука о микроскопических организмах, увиденных им в микроскоп;
– 1833 г. – Р. Броун описал ядро растительной клетки;
– 1839 г. –М. Шлейден и Т. Шванн открыли ядрышко.

Основные положения современной клеточной теории:

1. Все простые и сложные организмы состоят из клеток, способных к обмену с окружающей средой веществами, энергией, биологической информацией.
2. Клетка – элементарная структурная, функциональная и генетическая единица живого.
3. Клетка – элементарная единица размножения и развития живого.
4. В многоклеточных организмах клетки дифференцированы по строению и функциям. Они объединены в ткани, органы и системы органов.
5. Клетка представляет собой элементарную, открытую живую систему, способную к саморегуляции, самообновлению и воспроизведению.

Клеточная теория развивалась благодаря новым открытиям . В 1880 г. Уолтер Флемминг описал хромосомы и процессы, происходящие в митозе. С 1903 г. стала развиваться генетика. Начиная с 1930 г. стала бурно развиваться электронная микроскопия, что позволило ученым изучать тончайшее строение клеточных структур. XX век стал веком расцвета биологии и таких наук, как цитология, генетика, эмбриология, биохимия, биофизика. Без создания клеточной теории это развитие было бы невозможным.

В 1858 г. Р.Вирхов внес уточнение в КТ : все клетки возникают только из клеток путем их деления.

Итак, КТ утверждает, что все живые организмы состоят из клеток. Клетка – это та минимальная структура живого, которая обладает всеми жизненными свойствами – способностью к обмену веществ, росту, развитию, передаче генетической информации, саморегуляции и самообновлению. Клетки всех организмов обладают сходными чертами строения. Однако клетки отличаются друг от друга по своим размерам, форме и функциям :

  • яйцо страуса и икринка лягушки состоят из одной клетки;
  • мышечные клетки обладают сократимостью;
  • нервные клетки проводят нервные импульсы.

Различия в строении клеток во многом зависят от функций, которые они выполняют в организмах. Чем сложнее устроен организм, тем более разнообразны по своему строению и функциям его клетки. Каждый вид клеток имеет определенные размеры и форму. Сходство в строении клеток различных организмов, общность их основных свойств подтверждают общность их происхождения и позволяют сделать вывод о единстве органического мира.

1. Клетка – элементарная живая система, основа строения, жизнедеятельности, размножения и индивидуального развития прокариот и эукариот (т. е. клетка – элементарная структурная, функциональная и генетическая единица живого ) , исключение составляют вирусы

2. Клетки одноклеточных и многоклеточных животных и растительных организмов сходны (гомологичны) по строению, химическому составу, принципам обмена веществ и жизнедеятельности

3. Сходные по строению, функциям и происхождению клетки объединяются в ткани – основу многоклеточного организма (клетка – структурно – функциональная единица многоклеточных организмов )

4. Каждая клетка образуется только в результате деления исходной (материнской) клетки; все живые организмы развиваются из одной или группы клеток ( клетка – элементарная единица развития живого )

· Клеточная теория фиксирует основное противоречие клетки – способность быть одновременно и системой и элементом, целым и частью

· В сложных многоклеточных организмах клетки необратимо дифференцируются, специализируясь по выполнению определённой функции, объединяясь в ткани и органы, функционально связанные в системы (находятся под контролем межклеточных, гуморальных и нервных форм регуляции)

· В клетках осуществляются повторяющиеся обратимые процессы – химические реакции обмена веществ, поступление и выделение веществ, раздражимость, движение и необратимые процессы развития и дифференцировки

· Клеточная организация возникла на заре жизни и прошла длительный путь эволюции от безъядерных форм (прокариот) к ядерным (эукариотам) – одноклеточным, колониальным и многоклеточным

· Клетка – носитель наследственных структур (хромосом, генов) , обеспечивающая передачу наследственных признаков в поколениях, основа иидивидуального развития многоклеточных организмов, все физиологические процессы имеют свою цитологическую базу, непрерывность клеточных делений – одна из предпосылок эволюции, к клеткам приурочены процессы молекулярно- генетического уровня, поставляющие элементарный эволюционный материал (мутации и генетические рекомбинации)

· Клетка образует дискретный (отдельный) уровень организации живой материи

· Клетка – это элементарная живая система, способная к самообновлению, саморегуляции и самовоспроизведению

Конец работы -

Эта тема принадлежит разделу:

Сущность жизни

Живая материя качественно отличается от неживой огромной сложностью и высокой структурной и функциональной упорядоченностью.. Живая и неживая материя сходны на элементарном химическом уровне т е.. Химические соединения вещества клетки..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Мутационный процесс и резерв наследственной изменчивости
· В генофонде популяций происходит непрерывный мутационный процесс под действием мутагенных факторов · Чаще мутируют рецессивные аллели (кодируют менее устойчивую к действию мутагенных фа

Частота аллелей и генотипов (генетическая структура популяции)
Генетическая структура популяции - соотношение частот аллелей (А и а) и генотипов (АА, Аа, аа)в генофонде популяции Частота аллеля

Цитоплазматическая наследственность
· Имеются данные, необъснимые с точки зрения хромосомной теории наследственности А. Вейсмана и Т. Моргана (т. е. исключительно ядерной локализации генов) · Цитоплазма участвует в ре

Плазмогены митохондрий
· Одна миотохондрия содержит 4 - 5 кольцевых молекул ДНК длинной около 15 000 пар нуклеотидов · Содержит гены: - синтеза т РНК, р РНК и белков рибосом, некоторых ферментов аэро

Плазмиды
· Плазмиды - очень короткие, автономно реплицирующиеся кольцевые фрагменты молекулы ДНК бактерий, обеспечивающие нехромосомную передачу наследственной информации

Изменчивость
Изменчивость - общее свойство всех организмов приобретать структурно - функциональные отличия от своих предков.

Мутационная изменчивость
Мутации - качественные или количественные ДНК клеток организма, приводящие к изменениям их генетического аппарата (генотипа) · Мутационная теория созд

Причины мутаций
Мутагенные факторы (мутагены) - вещества и воздействия, способные индуцировать мутационный эффект (любые факторы внешней и внутренней среды, которые м

Частота мутаций
· Частота мутирования оьтдельных генов широко варьирут и зависит от состояния организма и этапа онтогенеза (обычно растёт с возрастом) . В среднем каждый ген мутирует один раз в 40 тысяч лет

Генные мутации (точковые, истинные)
Причина - изменение химической структуры гена (нарушение последовательности нуклеотидов в ДНК: * генные вставки пары или нескольких нуклеотидов

Хромосомные мутации (хромосомные перестройки, аберрации)
Причины- вызываются значительными изменениями в структуре хромосом (перераспределении наследственного материала хромосом) · Во всех случаях возникают в результате ра

Полиплоидия
Полиплоидия - кратное увеличение числа хромосом в клетке (гаплоидный набор хромосом -n повторяется не 2 раза, а множество раз - до 10 -1

Значение полиплоидии
1. Полиплоидия у растений характеризуется увеличением размеров клеток, вегетативных и генеративных органов - листье, стеблей, цветов, плодов, корнеплодов и проч. , у

Анеуплоидия (гетероплоидия)
Анеуплоидия (гетероплоидия) - изменение числа отдельных хромосом не кратное гаплоидному набору (при этом одна или несколько хромосом из гомологичной пары норма

Соматические мутации
Соматические мутации - мутации, возникающие в соматических клетках организма · Различают генные, хромосомные и геномные соматические мутации

Закон гомологических рядов в наследственной изменчивости
· Открыт Н. И. Вавиловым на основе изучения дикой и культурной флоры пяти континентов 5.Мутационный процесс у генетически близких видов и родов протекает параллельно, в р

Комбинативная изменчивость
Комбинативная изменчивость - изменчивость, возникающая в результате закономерной перекомбинации аллелей в генотипах потомков, вследствие полового размножения

Фенотипическая изменчивость (модификационная или ненаследственная)
Модификационная изменчивость - эволюционно закреплённые приспособительные реакции организма на изменение внешней среды без изменения генотипа

Значение модификационной изменчивости
1. большинство модификаций имеет приспособительное значение и способствует адаптации организма к изменению внешней среды 2. может вызывать негативные изменения -морфозы

Статистические закономерности модификационной изменчивости
· Модификации отдельного признака или свойства, измеряемые количественно, образуют непрерывный ряд (вариационный ряд) ; его нельзя построить по неизмеряемому признаку или признаку, суще

Вариационнвя кривая распределения модификаций в вариционном ряд
V - варианты признака Р - частота встречаемости вариантов признака Мо - мода, или наиболее

Различия в проявлении мутаций и модификаций
Мутационная (генотипическая) изменчивость Модификационная (фенотипическая) изменчивость 1. Связана с изменением гено - и кариотипа

Особенности человека как объекта генетических исследований
1. Невозможен целенапрвленный подбор родительских пар и экспериментальные браки (невозможность экспериментального скрещивания) 2. Медленная смена поколений, происходящая в среднем через

Методы изучения генетики человека
Генеалогический метод · В основе метода лежит составление и анализ родословных (введён в науку в конце XIX в. Ф. Гальтоном) ; суть метода состоит в прослеживании нас

Близнецовый метод
· Метод заключается в изучении закономерностей наследования признаков у одно - и двуяйцевых близнецов (частота рождения близнецов составляет один случай на 84 новорождённых)

Цитогенетический метод
· Заключается в визуальном изучении митотических метафазных хромосом под микроскопом · Основан на методе дифференциального окрашивания хромосом (Т. Касперсон,

Метод дерматоглифики
· Основан на изучении рельефа кожи на пальцах, ладонях и подошвенных поверхностях стоп (здесь имеются эпидермальные выступы -гребни,которые образуют сложные узоры) , этот признак наследуе

Популяционно - статистический метод
· Основан на статистической (математической) обработке данных о наследовании в больших группах населения (популяциях - группах, отличающихся по национальности, вероисповеданию, расам, профес

Метод гибридизации соматических клеток
· Основан на размножении соматических клеток органов и тканей вне организма в питательных стерильных средах (клетки чаще всего получают из кожи, костного мозга, крови, эмбрионов, опухолей) и

Метод моделирования
· Теоретическую основу биологического моделирования в генетике даёт закон гомологических рядов наследственной изменчивости Н.И. Вавилова · Для моделирования определённы

Генетика и медицина (медицинская генетика)
· Изучает причины возникновения, диагностические признаки, возможности реабилитации и профилактики наследственных болезней человека (мониторинг генетических аномалий)

Хромосомные болезни
· Причиной является изменение числа (геномные мутации) или структуры хромосом (хромосомные мутации) кариотипа половых клеток родителей (аномалии могут возникать на разн

Полисомии по половым хромосомам
Трисомия - X (синдром Трипло X) ; Кариотип (47 , XXX) · Известны у женщин; частота синдрома 1: 700 (0,1 %) · Н

Наследственные болезни генных мутаций
· Причина - генные (точечные) мутации (изменение нуклеотидного состава гена - вставки, замены, выпадения, переносы одного или нескольких нуклеотидов; точное количество генов у человека неизв

Болезни, контролируемые генами, локализованными на X- илиY-хромосоме
Гемофилия - несвёртываемость крови Гипофосфатемия - потеря организмом фосфора и недостаток кальция, размягчение костей Мышечная дистрофия -нарушения структур

Генотипический уровень профилактики
1. Поиск и применение антимутагенных защитных веществ Антимутагены (протекторы) - соединения, нейтрализующие мутаген до его реакции с молекулой ДНК или снимающие её

Лечение наследственных болезней
1. Симптоматическое и патогенетическое- воздействие на симптомы болезни (генетический дефект сохраняется и передаётся потомству) n диетотер

Взаимодействие генов
Наследственность - совокупность генетических механизмов, обеспечивающих сохранение и предачу структурно-функциональной организации вида в ряду поколений от предков п

Взаимодействие аллельных генов (одной аллельной пары)
· Выделяют пять типов аллельных взаимодействий: 1. Полное доминирование 2. Неполное доминирование 3. Сверхдоминирование 4. Кодоминирова

Комплементарность
Комплементарность - явление взаимодействия нескольких неаллельных доминантных генов, приводящее к возникновению нового признака, отсутствующего у обоих родителей

Полимерия
Полимерия - взаимодействие неаллельных генов, при котором развитие одного признака происходит только под действием нескольких неаллельных доминантных генов (полиген

Плейотропия (множественное действие гена)
Плейотропия - явление влияния одного гена на развитие нескольких признаков · Причина плейотропного влияния гена в действии первичного продукта эт

Основы селекции
Селекция (лат. selektio – отбор) – наука и отрасль с.-х. производства, разрабатывающая теорию и методы создания новых и улучшения существующих сортов растений, пород животны

Одомашнивание как первый этап селекции
· Культурные растения и домашние животные произошли от диких предков; этот процесс называют одомашниванием или доместикацией · Движущая сила доместикации – иску

Центры происхождения и многообразия культурных растений (по Н. И. Вавилову)
Название центра Географическое положение Родина культурных растений

Искусственный отбор (подбор родительских пар)
· Известны два вида искусственного отбора: массовый и индивидуальный Массовый отбор –выделение, сохранение и использование для размножения организмов, обладающих

Гибридизация (скрещивание)
· Позволяет сочетать определённые наследственные признаки в одном организме, а также избавляться от нежелательных свойств · В селекции применяют различные системы скрещивания &n

Родственное скрещивание (инбридинг)
Инбридинг– скрещивание особей, имеющих близкую степень родства: брат – сестра, родители – потомство (у растений наиболее тесная форма инбридинга осуществляется при самоо

Неродственное скрещивание (аутбридинг)
· При скрещивании неродственных особей вредные рецессивные мутации, находящиеся в гомозиготном состоянии переходят в гетерозиготное и не оказывают негативного влияния на жизнеспособность организма

Гетерозис
Гетерозис (гибридная сила) – явление резкого увеличения жизнеспособности и продуктивности гибридов первого поколения при неродственном скрещивании (межпо

Индуцированный (искусственный) мутагенез
· Частота с спектр мутаций резко повышается при воздействии мутагенов (ионизирующих излучений, химических веществ, экстремальных условий внешней среды и т. д.) · Примене

Межлинейная гибридизация у растений
· Заключается в скрещивании чистых (инбредных) линий, полученных в результате длительного принудительного самоопыления перекрёстноопыляющихся растений с целью получения максим

Вегетативное размножение соматических мутаций у растений
· Метод основан на выделении и отборе полезных соматических мутаций по хозяйственным признакам у лучших старых сортов (возможен только в селекции растений)

Методы селекционно-генетической работы И. В. Мичурина
1. Систематически отдалённая гибридизация а) межвидовая: Вишня владимирская х черешня Винклера = вишня Краса севера (зимостойкость) б) межродовая

Полиплоидия
· Полиплоидия – явление кратного основному числу (n) увеличения числа хромосом в соматических клетках организма (механизм образования полиплоидов и

Клеточная инженерия
· Культивирование отдельных клеток или тканей на искусственных стерильных питательных средах, содержащих аминокислоты, гормоны, минеральные соли и другие питательные компоненты (

Хромосомная инженерия
· Метод основывается на возможности замены или добавлении новых отдельных хромосом у растений · Возможно уменьшение или увеличение числа хромосом в любой гомологичной паре – анеуплоидия

Селекция животных
· Имеет ряд особенностей по сравнению с селекцией растений, объективно затрудняющих её проведение 1. Характерно в основном только половое размножение (отсутствие вегетати

Одомашнивание
· Началось около 10 – 5 тыс. назад в эпоху неолита (ослабило действие стабилизирующего естественного отбора, что привело к увеличению наследственной изменчивости и повышению эффективности отбора

Скрещивание (гибридизация)
· Существуют два метода скрещивания: родственное (инбридинг) и неродственное (аутбридинг) · При подборе пары учитывают родословные каждого производителя (племенные книги, учи

Неродственно скрещивание (аутбридинг)
· Может быть внутрипородное и межпорордное, межвидовое или межродовое (систематически отдалённая гибридизация) · Сопровождается эффектом гетерозиса гибридов F1

Проверка племенных качеств производителей по потомству
· Существуют хозяйственные признаки, проявляющиеся только у самок (яйценоскость, молочность) · Самцы участвуют в формировани этих признаков у дочерей (необходимо проверять самцов на ц

Селекция микроорганизмов
· Микроорганизмы (прокариоты – бактерии, синезелёные водоросли; эукариоты – одноклеточные водоросли, грибы, простейшие) – широко используются в промышленности, сельском хозяйстве, медици

Этапы селекции микроорганизмов
I. Поиски природных штаммов, способных к синтезу необходимых человеку продуктов II.Выделение чистого природного штамма (происходит в процессе многократного пересеивания п

Задачи биотехноглгии
1. Получение кормового и пищевого белка из дешового природного сырья и отходов промышленности (основа решения продовольственной проблемы) 2. Получение достаточного количесства

Продукция микробиологического синтеза
q Кормовой и пищевой белок q Ферменты (широко применяются в пищевой, спиртовой, пивоваренной, винодельческой, мясной, рыбной, кожевенной, текстильной и др. пр

Этапы технологического процесса микробиологического синтеза
I этап – получение чистой культуры микроорганизмов, содержащей лишь организмы одного вида или штамма · Каждый вид хранится в отдельной пробирке и поступает на производство и

Генная (генетическая) инженерия
Генная инженерия – это область молекулярной биологии и биотехнологии, занимающаяся созданием и клонированием новых генетических структур (рекомбинантных ДНК) и организмов с заданными н

Стадии получение рекомбинантных (гибридных) молекул ДНК
1. Получение исходного генетического материала – гена, кодирующего интересующий белок(признак) · Необходимый ген может быть получен двумя способами: искусственный синтез или выд

Достижения генной инженерии
· Введение генов эукариот в бактерии используется для микробиологического синтеза биологически активных веществ, которые в природе синтезируются только клетками высших организмов · Синтез

Проблемы и перспективы генной инженерии
· Изучение молекулярных основ наследственных заболеваний и разработка новых методов их лечения, изыскание методов исправления повреждений отдельных генов · Повышение сопротивляемости орга

Хромосомная инженерия у растений
· Заключается в возможности биотехнологической замены отдельных хромосом в гаметах растений или добавления новых · В клетках каждого диплоидного организма имеются пары гомологичных хромосо

Метод культуры клеток и тканей
· Метод представляет собой выращивание отдельных клеток, кусочков тканей или органов вне организма в искусственных условиях на строго стерильных питательных средах с постоянными физико-химическими

Клониальное микроразмножение растений
· Культивирование клеток растений относительно несложно, среды просты и дёшевы, а культура клеток неприхотлива · Метод культуры клеток растений состоит в том, что отдельная клетка или т

Гибридизация соматических клеток (соматическая гибридизация) у растений
· Протопласты растительных клеток без жёстких клеточных стенок могут сливаться друг с другом, образуя гибридную клетку, обладающую признаками обоих родителей · Даёт возможность получать

Клеточная инженерия у животных
Метод гормональной суперовуляции и трансплантации эмбрионов · Выделение от лучших коров десятков яйцеклеток в год способом гормональной индуктивной полиовуляции (вызывается

Гибридизация соматических клеток у животных
· Соматические клетки содержат весь объём генетической информации · Соматические клетки для культивирования и последующей гибридизации у человека получают из кожи, ко

Получение моноклониальных антител
· В ответ на введение антигена (бактерии, вирусы, эритроциты и др.) органимизм продуцирует с помощью В – лимфоцитов специфические антитела, которые представляют собой белки, называемые имм

Экологическая биотехнология
· Очистка воды путё создания очистных сооружений, работающих с использованием биологических методов q Окисление сточных вод на биологических фильтрах q Утилизация органических и

Биоэнергетика
Биоэнергетика – направление биотехнологии, связанное с получением энергии из биомассы при помощи микроорганизмов · Одним из эффективных методов получения энергии из биом

Биоконверсия
Биоконверсия – это превращение веществ, образовавшихся в результате обмена веществ, в структурно родственные соединения под действием микроорганизмов · Целью биоконверсии я

Инженерная энзимология
Инженерная энзимология – область биотехнологии, использующая ферменты в производстве заданных веществ · Центральным методом инженерной энзимологии является иммобилиза

Биогеотехнология
Биогеотехнология – использование геохимической деятельности микроорганизмов в горнодобывающей промышленности (рудной, нефтяной, угольной) · С помощью микроо

Границы биосферы
· Определяются комплексом факторов; к общим условиям существования живых организмов относятся: 1. наличие жидкой воды 2. наличие ряда биогенных элементов (макро- и микроэлемент

Свойства живого вещества
1. Содержат огромный запас энергии, способной производить работу 2. Скорость протекания химических реакции в живом веществе в миллионы раз быстрее обычных благодаря участию ферментов

Функции живого вещества
· Выполнятся живой материей в процессе осуществления жизнедеятельности и биохимических превращений веществ в реакциях метаболизма 1. Энергетическая – трансформация и усвоение живым

Биомасса суши
· Континентальная часть биосферы – суша занимает 29% (148 млн км2) · Неоднородность суши выражается наличием широтной зональности и высотной зональностью

Биомасса почвы
· Почва – смесь разложившихся органических и выветренных минеральных веществ; минеральный состав почвы включает кремнезём (до 50%) , глинозём (до 25%) , оксид железа, магния, калия, фосфора

Биомасса Мирового океана
· Площадь Мирового океана (гидросфера Земли) занимает 72,2% всей поверхности Земли · Вода обладает особыми свойствами, важными для жизни организмов – высокую теплоёмкость и теплопроводн

Биологический (биотический, биогенный, биогеохимический цикл) круговорот веществ
Биотический круговорот веществ – непрерывное, планетарное, относительно циклическое, неравномерное во времени и пространстве закономерное распределение веществ

Биогеохимические циклы отдельных химических элементов
· Биогенные элементы циркулируют в биосфере, т. е. совершают замкнутые биогеохимичесик циклы, которые функционируют под действием биологических (жизнедеятельность) и геологичес

Круговорот азота
· Источник N2 – молекулярный, газообразный, атмосферный азот (не усваивается большинством живых организмов, т. к. химически инертен; растения способны усваивать лишь связанный с ки

Круговорот углерода
· Главный источник углерода – углекислый газ атмосферы и воды · Круговорот углерода осуществляется благодаря процессам фотосинтеза и клеточного дыхания · Круговорот начинается с ф

Круговорот воды
· Осуществляется за счёт солнечной энергии · Регулируется со стороны живых организмов: 1. поглощение и испарение растениями 2. фотолиз в процессе фотосинтеза (разложени

Круговорот серы
· Сера- биогенный элемент живой материи; содержится в белках в составе аминокислот (до 2,5%) , входит в состав витаминов, гликозидов, коферментов, имеется в растительных эфирных маслах

Поток энергии в биосфере
· Источник энергии в биосфере – непрерывное электромагнитное излучение солнца и радиоактивная энергия q 42% солнечной энергии отражается от облаков, атмосферой пыли и поверхности Земли в

Возникновение и эволюция биосферы
· Живая материя, а вместе с ней и биосфера появилась на Земле вследствие возникновения жизни в процессе химической эволюции около 3,5 млрд лет назад, приведшей к образованию органических веществ

Ноосфера
Ноосфера (букв. сфера разума) – высшая стадия развития биосферы, связанная с возникновением и и становлением в ней цивилизованного человечества, когда его разум

Признаки современной ноосферы
1. Возрастающее количество извлекаемых материалов литосферы – рост разработок месторождений полезных ископаемых (сейчас оно превышает 100млрд тонн в год) 2. Массовое потр

Влияние человека на биосферу
· Современное состояние ноосферы характеризуется всё возрастающей перспективой экологического кризиса, многие аспекты которой уже проявляются в полной мере, создавая реальную угрозу сущест

Производство энергии
q Строительство ГЭС и создание водохранилищ вызывает затопление больших территорий и переселение людей, поднятие уровня грунтовых вод, эрозию и заболачивание почвы, оползни, потерю пахотных зем

Производство пищи. Истощение и загрязнение почвы, сокращение площади плодородных почв
q Пахотные земли занимают 10% поверхности Земли (1,2 млрд. га) q Причина – чрезмерная эксплуатация, несовершенство с\х производства: водная и ветровая эрозия и образование оврагов, в

Сокращение природного биологического разнообразия
q Хозяйственная деятельность человека в природе сопровождается изменением численности видов животных и растений, вымиранию целых таксонов, снижению разнообразия живого q В настоящее врем

Кислотные осадки
q Увеличение кислотности дождей, снега, туманов вследствие выброса в атмосферу окислов серы и азота от горения топлива q Кислые осадки снижают урожай, губят естественную растительность

Пути решения экологических проблем
· Человек в дальнейшем будет эксплуатировать ресурсы биосферы во всё более возрастающих масштабах, поскольку эта эксплуатация – непременное и главное условие самого существования ч

Рациональное потребление и управление природными ресурсами
q Максимально полное и комплексное извлечение из месторождений всех полезных ископаемых (из-за несовершенства технологии добычи из месторождений нефти извлекается лишь 30-50% запасов q Рек

Экологическая стратегия развития сельского хозяйства
q Стратегическое направление - повышение урожайности для обеспечения продовольствием растущего населения без увеличения посевных площадей q Повышение урожайности с\х культур без негативны

Свойства живой материи
1. Единство элементарного химического состава (98% приходится на углерод, водород, кислород и азот) 2. Единство биохимического состава – все живые органи

Гипотезы происхождения жизни на Земле
· Существую две альтернативные концепции о возможности происхождения жизни на Земле: q абиогенез – возникновение живых организмов из веществ неорганической природы

Стадии развития Земли (химические предпосылки возникновения жизни)
1. Звездная стадия истории Земли q Геологическая история Земли началась более 6 морд. лет назад, когда Земля представляла собой раскалённый свыше 1000

Возникновение процесса самовоспроизведения молекул (биогенного матричного синтеза биополимеров)
1. Произошло вследствие взаимодействия коацерватов с нуклеиновыми кислотами 2. Все необходимые компоненты процесса биогенного матричного синтеза: - ферменты - белки - пр

Предпосылки возникновения эволюционной теории Ч. Дарвина
Социально-экономические предпосылки 1. В первой половине XIX в. Англия стала одной из самых развитых в хозяйственном отношении стран мира с высоким уровне


· Изложены в книге Ч. Дарвина « О происхождение видов путём естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь » , которая вышла

Изменчивость
Обоснование изменяемости видов · Для обоснования положения об изменчивости живых существ Ч. Дарвин воспользовался распространёнными

Коррелятивная (соотносительная) изменчивость
· Изменение структуры или функции одной части организма обуславливает согласованное изменение другой или других, поскольку организм - целостная система, отдельные части которой тесно связаны межд

Основные положения эволюционного учения Ч. Дарвина
1. Все виды живых существ, населяющих Землю, никогда и никем не были созданы, а возникли естественным путём 2. Возникнув естественным путём, виды медленно и постепенно

Развитие представлений о виде
· Аристотель- пользовался понятием вида при описании животных, которое не имело научного содержания и использовалось как логическое понятие · Д. Рэй

Критерии вида (признаки идентификации видовой принадлежности)
· Значение критериев вида в науке и практике – определение видовой принадлежности особей (видовая идентификация) I. Морфологический – сходство морфологических наследс

Виды популяций
1. Панмиктические - состоят из особей, размножающихся половым путём, перекрёстно оплодотворяющихся. 2. Клониальные- из особей, размножающихся только бе

Мутационный процесс
· Спонтанные изменения наследственного материала половых клеток в виде генных, хромосомных и геномных мутаций происходят постоянно на протяжении всего периода существования жизни под действием мут

Изоляция
Изоляция - прекращение потока генов из популяции в популяцию (ограничение обмена генетической информацией между популяциями) · Значение изоляции как фа

Первичная изоляция
· Не связана прямо с действием естественного отбора, является следствием внешних факторов · Приводит к резкому снижению или прекращению миграции особей из других попул

Экологическая изоляция
· Возникает на основе экологических отличий существования разных популяций (разные популяции занимают различные экологические ниши) v Например, форели озера Севан р

Вторичная изоляция (биологическая, репродуктивная)
· Имеет решающее значение в формировании репродуктивной изоляции · Возникает вследствие внутривидовых различий организмов · Возникла в результате эволюции · Имеет два изо

Миграции
Миграции - перемещение особей (семян, пыльцы, спор) и свойственных им аллелей между популяциями, ведущее к изменению частот аллелей и генотипов в их генофондах · Общее с

Популяционные волны
Популяционные волны (« волны жизни ») - периодические и непериодические резкие колебания численности особей популяции под действием естественных причин (С. С.

Значение популяционных волн
1. Приводит к ненаправленному и резкому изменению частот аллелей и генотипов в генофонде популяций (случайное выживание особей в период зимовки может увеличить концентрацию данной мутации в 1000 р

Дрейф генов (генетико-автоматические процессы)
Дрейф генов (генетико-автоматические процессы) - случайное ненаправленное, не обусловленное действием естественного отбора, изменение частот аллелей и генотипов в м

Результат дрейфа генов (для малых популяций)
1. Обуславливает утрату (р =0) или фиксацию (р=1) аллелей в гомозоготном состоянии у всех членов популяции вне связи с их адаптивной ценностью - гомозиготизация особей

Естественный отбор - направляющий фактор эволюции
Естественный отбор – процесс преимущественного (селективного, выборочного) выживания и размножения наиболее приспособленных особей и не выживания или не размножения

Борьба за существование Формы естественного отбора
Движущий отбор (Описан Ч. Дарвином, современное учение развито Д. Симпсоном, англ.) Движущий отбор - отбор в

Стабилизирующий отбор
· Теорию стабилизирующего отбора разработал русский акад. И. И. Шмаьгаузен (1946) Стабилизирующиё отбор - отбор, действующий в стабильных

Другие формы естественного отбора
Индивидуальный отбор -избирательное выживание и размножение отдельных особей, обладающих преимуществом в борьбе за существование и элиминация других

Основные особенности естественного и искусственного отбора
Естественный отбор Искусственный отбор 1. Возник с возникновением жизни на Земле (около 3млрд лет назад) 1. Возник в не

Общие признаки естественного и искусственного отбора
1. Исходный (элементарный) материал - индивидуальные признаки организма (наследственные изменения - мутации) 2. Осуществляются по фенотипу 3. Элементарная структура - популяци

Борьба за существование - важнейший фактор эволюции
Борьба за существование - комплекс взаимоотношений организма с абиотическими (физические условия жизни) и биотическими (отношения с другими живыми организмами) фак

Интенсивность размножения
v Одна особь аскариды производит в сутки 200 тыс. яиц; серая крыса даёт 5 помётов в год по 8 крысят, которые становятся половозрелыми в трёхмесячном возрасте; потомство одной дафнии за лето дост

Межвидовая борьба за существование
· Происходит между особями популяций разных видов · Менее острая, чем внутривидовая, но её напряжённость увеличивается, если разные виды занимают сходные экологические ниши и обладают с

Борьба с неблагоприятными абиотическими факторами окружающей среды
· Наблюдается во всех случаях, когда особи популяции оказываются в экстремальных физических условиях (излишнее тепло, засуха, суровая зима, избыточная влажность, неплодородные почвы, суровые

Основные открытия в области биологии после создания СТЭ
1. Открытие иерархических структур ДНК и белка, в том числе вторичной структуры ДНК - двойной спирали и её нуклеопротеидной природы 2. Расшифровка генетического кода (его триплетнос

Признаки органов эндокринной системы
1. Обладают относительно небольшими размерами (доли или несколько грамм) 2. Анатомически не связаны между собой 3. Синтезируют гормоны 4. Имеют обильную сеть кровеносны

Характеристика (признаки) гормонов
1. Образуются в железах внутренней секреции (нейрогормоны могут синтезироваться в нейросекреторных клетках) 2. Высокая биологическая активность – способность быстро и сильно изменять инт

Химическая природа гормонов
1. Пептиды и простые белки (инсулин, соматотропин, тропные гормоны аденогипофиза, кальцитонин, глюкагон, вазопрессин, окситоцин, гормоны гипоталамуса) 2. Сложные белки – тиреотропин, лют

Гормоны средней (промежуточной) доли
Меланотропный гормон(меланотропин) – обмен пигментов (меланина) в покровных тканях Гормоны задней доли (нейрогипофиза) – окситрцин, вазопрессин

Гормоны щитовидной железы (тироксин, трийодтиронин)
В состав гормонов щитовидной железы непременно входит йод и амнокислота тирозин (ежедневно в составе гормонов выделяется 0,3 мг. йода, следовательно человек должен ежедневно с пищей и водой получа

Гипофункция щитовидной железы (гипотериоз)
Причиной гипотерозов является хронический дефицит йода в пище и воде Недостаток секреции гормонов компенсируется за счёт разрастания ткани железы и значительное увеличение её объёма

Гормоны коркового слоя (минералкортикоиды, глюкокортикоиды, половые гормоны)
Корковый слой образован из эпителиальной ткани и состоит из трёх зон: клубочковой, пучковой и сетчатой, имеющих разную морфологию и функции. Гормоны относится к стероидам – кортикостероиды

Гормоны мозгового слоя надпочечников (адреналин, норадреналин)
- Мозговой слой состоит из особых хромаффинных клеток, окрашивающихся в жёлтый цвет, (эти же клетки расположены в аорте, месте разветвления сонной артерии и в симпатических узлах; все они составл

Гормоны поджелудочной железы (инсулин, глюкагон, соматостатин)
Инсулин (секретируется бета-клетками(инсулоцитами), является простейшим белком) Функции: 1. Регуляция углеводного обмена (единственный сахаропониж

Тестостерон
Функции: 1. Развитие вторичных половых признаков (пропорции тела, мускулатура, рост бороды, волос на теле, психические особенности мужчины и др.) 2. Рост и развитие органов размножения

Яичники
1. Парные органы (размеры около 4 см. , масса 6-8 гр.), расположенные в малом тазу, по обеим сторонам матки 2. Состоят из большого числа (300 -400 тыс.) т. н. фолликулов – структу

Эстрадиол
Функции: 1. Развитие женских половых органов: яйцеводов, матки, влагалища, молочных желёз 2.Формирование вторичных половых признаков женского пола (телосложение, фигура, отложение жира, в

Железы внутренней секреции (эндокринная система) и их гормоны
Эндокринные железы Гормоны Функции Гипофиз: - передняя доля: аденогипофиз - средняя доля - задня

Рефлекс. Рефлекторная дуга
Рефлекс – ответная реакция организма на раздражение (изменение) внешней и внутренней среды, осуществляющуюся с участием нервной системы (основная форма деятельнос

Механизм обратной связи
· Рефлекторная дуга не заканчивается ответной реакцие организма на раздражение (работой эффектора). Все ткани и органы имеют собственные рецепторы и афферентные нервные пути, подходящие к чувствите

Спинной мозг
1. Наиболее древний отдел ЦНС позвоночных (впервые появляется у головохордовых – ланцетника) 2. В процессе эмбриогенеза развивается из нервной трубки 3. Располагается в костном

Скелетно-моторные рефлексы
1. Коленный рефлекс (центр локализуется в поясничном сегменте); рудиментарный рефлекс от животных предков 2. Ахиллов рефлекс (в поясничном сегменте) 3. Подошвенный рефлекс (с

Проводниковая функция
· Спинной мозг имеет двустороннюю связь с головным мозгом (стволовой частью и корой полушарий); через спинной мозг головной мозг связан с рецепторами и исполнительными органами тела · Св

Головной мозг
· Головной и спинной мозг развиваются у эмбриона из наружного зародышевого листка - эктодермы · Располагается в полости мозгового черепа · Покрыт (как и спинной мозг) тремя обол

Продолговатый мозг
2. В процессе эмбриогенеза развивается из пятого мозгового пузыря нервной трубки зародыша 3. Является продолжением спинного мозга (нижней границей между ними является место выхода корешко

Рефлекторная функция
1. Защитные рефлексы: кашель, чихание, мигание, рвота, слёзоотделение 2. Пищевые рефлексы: сосание, глотание, сокоотделение пищеварительных желёз, моторика и перистальтика

Средний мозг
1. В процессе эмбриогенеза из третьего мозгового пузыря нервной трубки зародыша 2. Покрыт белым веществом, серое вещество – внутри в виде ядер 3. Имеет следующие структурные компо

Функции среднего мозга (рефлекторная и проводниковая)
I. Рефлекторная функция(все рефлексы врождённые, безусловные) 1. Регуляция мышечного тонуса при движении, ходьбе, стоянии 2. Ориентировочный рефлекс

Таламус (зрительные бугры)
· Представляет собой парные скопления серого вещества (40 пар ядер), покрытые слоем белого вещества, внутри – III желудочек и ретикулярная формация · Все ядра таламуса афферентные, чувств

Функции гипоталамуса
1. Высший центр нервной регуляции сердечно-сосудистой системы, проницаемость кровеносных сосудов 2. Центр терморегуляции 3. Регуляция водно-солевого баланса орган

Функции мозжечка
· Мозжечёк соединён со всеми отделами ЦНС; рецепторами кожи, проприорецептрами вестибулярного и двигательного аппарата, подкоркой и корой больших полушарий · Функции мозжечка исследуют пут

Конечный мозг (большой мозг, большие полушария переднего мозга)
1. В процессе эмбриогенеза развивается из первого мозгового пузыря нервной трубки зародыша 2. Состоит из двух полушарий (правого и левого), разделённых глубокой продольной щелью и соединён

Кора больших полушарий (плащ)
1. У млекопитающих и человека поверхность коры складчатая, покрытая извилинами и бороздами, обеспечивающими увеличение площади поверхности (у человека составляет около 2200 см2

Функции коры больших полушарий
Методы изучения: 1. Электрическое раздражение отдельных участков (метод «вживления» электродов в зоны мозга) 3. 2. Удаление (экстирпация) отдельных участк

Сенсорные зоны(области) коры больших полушарий
· Представляют из себя центральные (корковые) отделы анализаторов, к ним подходят чувствительные (афферентные) импульсы от соответствующих рецепторов · Занимают небольшую часть кор

Функции ассоциативных зон
1. Связь между различными зонами коры (сенсорными и моторными) 2. Объединение (интеграция) всей чувствительной информации, поступающей в кору с памятью и эмоциями 3. Решающее з

Особенности вегетативной нервной системы
1. Разделяется на два отдела: симпатический и парасимпатический (каждый из них имеет центральную и переферическую части) 2. Не имеет собственных афферентных (

Особенности отделов вегетативной нервной системы
Симпатический отдел Парасимпатический отдел 1. Центральные ганглии расположены в боковых рогах грудных и поясничных сегментов спинн

Функции вегетативной нервной системы
· Большинство органов тела иннервирует как симпатическая, так и парасимпатическая системы (двойная иннервация) · Оба отдела оказывают на органы три рода действий – сосудодвигательное,

Влияние симпатического и парасимпатического отдела вегетативной нервной системы
Симпатический отдел Парасимпатический отдел 1. Учащает ритм, увеличивает силу сердечных сокращений 2. Расширяет коронарные сосуды се

Высшая нервная деятельность человека
Психические механизмы отражения: Психические механизмы проектирования будущего - ощуще

Особенности (признаки) безусловных и условных рефлексов
Безусловные рефлексы Условные рефлексы 1. Врожденные видовые реакции организма (передаются по наследству) – генетически детерм

Методика выработки (образования) условных рефлексов
· Разработана И. П. Павловым на собаках при изучении слюноотделения при действии световых или звуковых раздражений, запахов, прикосновений и т. д. (проток слюнной железы выводился наружу через разр

Условия выработки условных рефлексов
1. Индифферентный раздражитель должен предшествовать безусловному (опережающее действие) 2. Средняя сила индифферентного раздражителя (при малой и большой силе рефлекс может не образовать

Значение условных рефлексов
1. Лежат в основе обучения, получения физических и психических навыков 2. Тонкое приспособление вегетативных, соматических и психических реакций к условиям с

Индукционное (внешнее) торможение
o Развивается при действии постороннего, неожиданного, сильного раздражителя из внешней или внутренней среды v Сильный голод, переполненный мочевой пузырь, боль или половое возбуждение тор

Угасательное условное торможение
· Развивается при систематическом неподкреплении условного раздражителя безусловным v Если условный раздражитель повторять через короткие промежутки времени без подкреплениея его бе

Взаимоотношене возбуждения и торможения в коре больших полушарий
Иррадиация - распространение процессов возбуждения или торможения из очага их возникновения на другие области коры · Примером иррадиации процесса возбуж

Причины возникновения сна
· Существуют несколько гипотез и теорий причин возникновения сна: Химическая гипотеза – причиной сна является отравления клеток мозга токсичными продуктами жизнедеятельности, образ

Быстрый (парадоксальный) сон
· Наступает после периода медленного сна и продолжается 10 -15 мин; затем опять сменяется медленным сном; повторяется в течение ночи 4-5 раз · Характеризуется быстрыми

Особенности высшей нервной деятельности человека
(отличия от ВНД животных) · Каналы получения информации о факторах внешней и внутренней среды называются сигнальными системами · Выделяют первую и вторую сигнальные систем

Особенности высшей нервная деятельность человека и животных
Животное Человек 1. Получение информации о факторах среды только с помощью первой сигнальной системы (анализаторов) 2. Конкретное

Память, как компонент высшей нервной деятельности
Память – совокупность психических прцессов, обеспечивающих сохранение, закрепление и воспроизведение предыдущего индивидуального опыта v Основные прцессы памяти

Анализаторы
· Всю информацию о внешней и внутренней среде организма, необходимую для взаимодействие с ней человек получает с помощью органов чувств (сенсорных систем, анализаторов) v Понятие об анали

Строение и функции анализаторов
· Каждый анализатор состоит из трёх анатомически и функционально связанных отделов: переферического, проводникового и центрального · Повреждение одной из частей анализатора

Значение анализаторов
1. Информация организму о состоянии и изменении внешней и внутренней среды 2. Возникновение ощущений и формирование на их основе понятий и представлений об окружающем мире,т. е.

Сосудистая оболочка (средняя)
· Находится под склерой, богата кровеносными сосудами, состоит из трёх частей: переднюю – радужку, среднюю – ресничное тело и заднюю – собственно сосудистую

Особенности фоторецепторных клеток сетчатки
Палочки Колбочки 1. Количество 130 млн. 2. Зрительный пигмент– родопсин(зрительный пурпур) 3. Максимальное количество на п

Хрусталик
· Расположен позади зрачка, имеет форму двояковыпуклой линзы диаметром около 9 мм, абсолютно прозрачен и эластичен. Покрыт прозрачной капсулой, к которой прикрепляются цинновы связки ресничного тел

Функционирование глаза
· Зрительная рецепция начинается с фотохимических реакций, начинающихся в палочках и колбочках сетчатки и заключающихся в распаде зрительных пигментов под действием квантов света. Именно это

Гигиена зрения
1. Профилактика травм (защитные очки на производстве с травмирующими объектами – пыль, химические вещества, стружки, осколки и т.д.) 2. Защита глаз от слишком яркого света – солнце, эле

Наружное ухо
· Представлении ушной раковиной и наружным слуховым проходом · Ушная раковина – свободно выступающая на поверхности головы

Среднее ухо (барабанная полость)
· Лежит внутри пирамиды височной кости · Заполнено воздухом и сообщается с носоглоткой через трубку, длиной 3,5 см. и диаметром 2 мм – евстахиеву трубу Функция евстахиев

Внутреннее ухо
· Расплагается в пирамиде височной кости · Включает костный лабиринт, представляющий собой сложно устроенные каналы · Внутри костног

Восприятие звуковых колебаний
· Ушная раковина улавливает звуки и направляет их в наружный слуховой проход. Звуковые волны вызывают колебания барабанной перепонки, которые от неё предаются по системе рычагов слуховых косточек (

Гигиена слуха
1. Профилактика травм органов слуха 2. Защита органов слуха от чрезмерной силы или продолжительности звуковых раздражений – т. н. «шумового загрязнения», особенно в условиях шумного произв

Биосферный
1. Представлен клеточными органоидами 2. Биологические мезосистемы 3. Возможны мутации 4. Гистологический метод исследования 5. Начало метаболизма 6. Об


« Строение эукариотической клетки » 9. Органоид клетки, содержащие ДНК 10. Имеет поры 11. Выполняет в клетке компартаментальную функцию 12. Функ

Клеточный центр
Проверочный тематический цифровой диктант по теме « Метаболизм клетки » 1. Осуществляется в цитоплазме клетки 2. Требует специфических фермен

Тематический цифровой программированный диктант
по теме « Энергетический обмен » 1. Осуществляются реакции гидролиза 2. Конечные продукты – СО2 и Н2 О 3. Конечный продукт – ПВК 4. НАД восстана

Кислородный этап
Тематический цифровой программированный диктант по теме « Фотосинтез » 1. Осуществляется фотолиз воды 2. Происходит восстановление


« Метаболизм клетки:Энергетический обмен. Фотосинтез. Биосинтез белка» 1. Осуществляется у автотрофов 52. Осуществляется транскрипция 2. Связан с функционировани

Основные признаки царств эукариот
Царство Растений Царство Животных 1. Имеют три подцарства: – низшие растения (настоящие водоросли) – красные водоросли

Особенности видов искусственного отбора в селекции
Массовый отбор Индивидуальный отбор 1. К размножению допускаются множество особей с наиболее выраженными хозя

Общие признаки массового и индивидуального отбора
1. Осуществляется человеком при искусственном отборе 2. К дальнейшему размножению допускаются толко особи с наиболее выраженным желаемым признаком 3. Может быть многократным


Клетка - элементарная единица живой системы. Элементарной единицей она может быть названа потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки живого.

Клетка обладает всеми свойствами живой системы: она осуществляет обмен веществ и энергии, растет, размножается и передает по наследству свои признаки, реагирует на внешние раздражители и способна двигаться.

История изучения клетки связана с именами ряда ученых:

  1. Р. Гук - впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевине бузины увидел ячейки, которые назвал клетками.
  2. А. Левенгук - впервые увидел клетки под увеличением в 270 раз, открыл одноклеточные организмы.
  3. Т. Шванн и М. Шлейден - обобщили знания о клетке, сформировали основное положение о клеточной теории: все растительные и животные организмы состоят из клеток, сходных по строению. Они ошибочно считали, что клетки в организме возникают из первичного неклеточного вещества.
  4. Р. Вирхов - утверждал, что каждая клетка происходит только от клетки в результате ее деления.
  5. Р. Броун - открыл ядро в клетке.
  6. К. Бар - установил, что все организмы начинают свое развитие с одной клетки.

Значение клеточной теории в развитии науки велико. Стало очевидно, что клетка - это важнейшая составная часть всех живых организмов. Она их главный компонент в морфологическом отношении; клетка является эмбриональной основой многоклеточного организма. Клеточная теория позволила прийти к выводу о сходстве химического состава всех клеток и еще раз подтвердила единство всего органического мира.

Основные положения клеточной теории на современном этапе развития биологической науки можно сформулировать следующим образом:

  1. Клетка - основная единица строения и функционирования живого организма.
  2. Клетка - саморегулирующая открытая система.
  3. Клетки всех организмов в принципе сходны по химическому составу, строению и функциям.
  4. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.
  5. Все новые клетки образуются при делении исходных клеток.
  6. В многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани.


Дальнейшее совершенствование микроскопической техники, создание электронного микроскопа и появление методов молекулярной биологии открывают широкие возможности проникновения в тайны клетки, познании ее сложной структуры, многообразии протекающих в ней биохимических процессов.

Клеточная теория - один из основных принципов биологии. Первыми эту теорию сформулировали немецкие ученые Теодор Шванн, Маттиас Шлейден и Рудольф Вирхов.

Суть клеточной теория заключаться в следующих пунктах:

  • Все живые организмы состоят из клеток. Они могут быть одноклеточными или многоклеточными.
  • Клетки является основной .
  • возникают из ранее существовавших клеток. (Они не происходят от спонтанной генерации).

Современная версия клеточной теория включает следующие основные положения:

  • Поток энергии происходит внутри клеток.
  • Информация о наследовании (ДНК) передается от клетки к клетке.
  • Все клетки имеют один и тот же основной химический состав.

В дополнение к теории клеток , и составляют главные принципы, лежащие в основе изучения жизни.

Основы клеток

Репликация ДНК и синтез белка

Клеточный процесс репликации ДНК является важной функцией, которая необходима для нескольких процессов, включая синтез и деление клеток. Транскрипция ДНК и трансляция РНК делают возможным процесс синтеза белка.

Сформулировали клеточную теорию, основываясь на множестве исследований клетки (). Рудольф Вирхов позднее () дополнил ее важнейшим положением (любая клетка происходит из клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма . Клетки животных , растений и бактерии имеют сходное строение. Позднее эти выводы стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетках: вне клеток нет жизни.


2. Основные положения клеточной теории

Современная клеточная теория включает следующие основные положения:


3. Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список ее положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.


4. История

4.1. XVII века

Рисунок микроскопической структуры пробки Роберта Гука из его труда "Микрография"

1665 - английский физик Р. Гук в работе "Микрография" описывает строение пробки, на тонких срезах которого он нашел правильно расположенные пустоты. Эти пустоты Гук назвал "ячейками, или клетками". Наличие такой структуры было известно ему и в некоторых других частях растений.

1670-е годы - итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали в разных органах растений "мешочки, или пузырьки" и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопистов А. Левенгук . Он же первым открыл мир одноклеточных организмов - описал бактерий и простейших (инфузорий).

Исследователи XVII века, показали распространенность "клеточного строения? растений, не оценили значение открытия клетки. Они представляли клетки как пустоты в непрерывной массе растительных тканей. Грю рассматривал стенки клеток как волокна, поэтому он ввел термин "ткань", по аналогии с текстильной тканью. Исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточное строение.


4.2. XVIII века

В XVIII веке происходят первые попытки сопоставления микроструктуры клеток растений и животных. К. Ф. Вольф в работе?Теории зарождения? (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфом, зародыш как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приведенные Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистов XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.


4.3. XIX века

В первой четверти XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Ссылка и Молднхоуер устанавливают наличие в растительных клеток самостоятельных стенок. Выясняется, что клетка является определенной морфологически обособленной структурой. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточных структуры растений, как водоносные трубки, развиваются из клеток.

Мейен в "Фитотомии" (1830) описывает растительные клетки, которые "бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или, образуя более высоко организованные растения, они соединяются в более и менее значительные массы ". Мейен подчеркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро ​​и высказывает предположение, что оно является постоянной составной частью растительной клетки.


4.3.1. Школа Пуркинье

В 1801 году виги ввел понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) описали в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с микроскопическими тканевыми структурами животных, Пуркинье чаще называл "зернышками" (для некоторых животных структур в его школе применялся термин "клетка").

В 1837 г. Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желез, нервной системы и т. д. В таблице, прилагаемой к его докладу, были приведены четкие изображения некоторых клеток тканей животных. Тем не менее установить гомологи клеток растений и животных клеток Пуркинье не смог:

  • Во-первых, под зернышками он понимал то клетки, то клеточные ядра;
  • Во-вторых, термин "клетка" тогда понимался буквально как "пространство, ограниченное стенками".

Сопоставление клеток растений и "зернышек" животных Пуркинье вел в плане аналогии, а не гомологии этих структур (понимая сроки "Аналогия" и "Гомология" в современном понимании).


4.3.2. Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды), его ученик Фридрих Генле опубликовал исследование о кишечный эпителий, в котором дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, которые заложили основу клеточной теории. На работу Шванна значительно повлияла школа Пуркинье и Генле. Шванн нашел правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Он смог установить гомологи и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

Для дальнейшего развития клеточной теории существенное значение имело ее распространение на простейших , которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Цезарь), что нашло свое выражение в определении клетки, данном М. Шульце в 1861 г.:

В 1861 году Брюкке выдвигает теорию о сложное строение клетки, которую он определяет как "элементарный организм", выясняет далее развитую Шлейденом и Шванном теорию клитиноутворення из бесструктурной вещества (цитобластемы). Выявлено, что способом образования новых клеток является клеточное деление, которое впервые было изучено на нитчатых водорослях. В опровержение теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Разделение тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров собой серию последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирхов в виде афоризма:

"Omnis cellula EХ cellula".
Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер учения о клетке, развивавшегося в рамках механистического представления о природе. Уже в Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в "целлюлярной патологии" Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие учения о клетке:

  • Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности учения о клетке. Труда Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазмы и ядра, признанными существенными частями клетки.
  • Вирхов направил развитие клеточной теории путем чисто механистического трактовки организма.
  • Вирхов возводил клетки в степень самостоятельные существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

4.5. XX века

Клеточная теория со второй половины XIX века приобретала все более метафизический характер, усиленный "целлюлярного физиологией" Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершение этой линии развития клеточной теории появилась Механистическая теория "клеточной государства", сторонником которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки - с гражданами. Подобная теория противоречила принципу целостности организма.

Механистический направление в развитии клеточной теории подвергся острой критике. В 1860 году с критикой представлений Вирхова о клетке выступил И. М. Сеченов. Позже клеточная теория подвергалась критических оценок со стороны других авторов. Наиболее серьезные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвич (1904), М. Гейденгайном (1907), Добелл (1911). С большой критикой учения о клетке выступил чешский гистолог Студничка (1929, 1934).

В 1950-е советский биолог О. Б. Лепешинская, основываясь на данных своих исследований, выдвинула "новую клеточную теорию" в противовес "вирховианству". В ее основу было положено представление, что в онтогенезе клетки могут развиваться по какой-то неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и ее сторонниками в основу выдвинутой им теории, не подтвердила данных о развитии клеточных ядер по безъядерной "живого вещества".


4.6. Современная клеточная теория

Современная клеточная теория исходит из того, что клетка является главной формой существования жизни, присуща всем живым организмам, кроме вирусов . Совершенствование клеточной структуры было главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалась в большинстве современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

Целостность организма есть результат естественных взаимосвязей. Клетки многоклеточного организма не является индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных организмов, которые дают начало новым особям (гаметы, зиготы, или споры) и могут рассматриваться как отдельные организмы.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.




Понравилась статья? Поделиться с друзьями: