Симптомы отравления фосфорорганическими соединениями. Симптомы отравления фосфорорганическими соединениями Фосфорорганические соединения физико химические свойства

В начале XX века было установлено, что фосфорорганические со-
единения играют большую роль в жизни живых организмов. В 30-е годы XX века были синтезированы органические соединения фосфора, характеризуемые высоким токсическим действием. Именно в это время были синтезированы такие отравляющие вещества, как табун, зарин, зоман и др. Фосфорорганические соединения находят разнообразное применение в народном хозяйстве. Многие из них используют в производстве термостойких пластмасс (диалиловый эфир хлорметилфосфорной и фенилфосфоновой кислот используется в производстве оргстекла специального назначения: высокопрозрачное, термостойкое, химически инертное). Отдельные фосфорорганические соединения
применяют для обработки натуральных и синтетических волокон для придания им негорючести. Некоторые эфиры фосфоновых и фосфиновых кислот используют для получения химически стойких лаков, пленок, клеев. Третичные фосфины и другие соединения фосфора используют в качестве катализаторов.

В нефтехимической промышленности фосфорорганические соединения применяют как присадки к маслам и бензинам для улучшения их качества. Соединения типа триарилфосфатов используют как огнестойкие гидрав-
лические жидкости.

Моно- и диалкилфосфиты с восемью и десятью атомами углерода нашли применение в качестве поверхностно-активных веществ в текстильной промышленности. Диалкилдитиофосфаты применяют как флотореагенты
для разделения металлов руд. Особенно широко их применяют для разделения металлических руд золота, серебра, меди, цинка и т. д., а также в технологии получения урана из руд и для его очистки.

Фосфорорганические соединения по характеру связи фосфора с углеродом можно классифицировать на две группы:

1) Р-С соединения, в которых атом фосфора непосредственно связан с одним, или несколькими атомами углерода;

2) Р-О-С соединения, в которых атом фосфора связан с атомом углерода через кислород.

В свою очередь Р-С соединения подразделяются на следующие
подгруппы:

1) фосфины, производные РН 3 ; первичные R-РН 2 ,
вторичные R 2 РН и третичные R 3 P;

2) производные фосфонистой кислоты R -Р(ОН) 2 ;

3) производные фосфинистой кислоты R 3 -Р(ОН);

4) производные фосфиновой кислоты R 2 -Р ОН

5) производные фосфоновой кислоты

6) фосфораны R Х РГу (х + у = 5).

Р-О-С соединения подразделяются на ряд подгрупп, в которых атом фосфора является пятивалентным:

1) производные фосфорной кислоты

2) производные пирофосфорной кислоты

3) полимерные соединения (полиэфиры)

Кроме перечисленных известны и другие органические соединения фосфора: тиосоединения, металлорганические соединения, циклические фосфорсодержащие и др.


Несмотря на большое разнообразие соединений фосфора и широкое их применение в народном хозяйстве пожарная опасность их изучена далеко не полно. Остановимся на характеристике пожарной опасности отдельных
видов этих соединений.

Фосфины можно рассматривать как производные фосфористого водорода РН 3 , атомы водорода которого замещены углеводородными радикалами. Различают фосфины первичные RРН 2 , вторичные R 2 PН и третичные R 3 Р. Первичные и вторичные фосфины получают взаимодейcтвием фосфористого водорода с галогеналкилами.

Третичные фосфины получают взаимодействием треххлористого фосфора с магнийгалогеналкилами.

Первичные, вторичные и третичные фосфины, содержащие низшие алкильные радикалы, являются жидкими веществами с отвратительным запахом. Лишь метилфосфин СН 3 РН 2 является бесцветным газом. Фосфины не растворимы в воде. Легко окисляются под действием окислителей с выделением тепла, что может привести к самовозгоранию. На воздухе жадно поглощают кислород. Поэтому низшие фосфины на воздухе самовоспламеняются.

Третичные фосфины, содержащие в радикале четыре и более атомов углерода, являются твердыми веществами; в воде не растворяются. На воздухе окисляются медленно и имеют сравнительно невысокую температуру самовоспламенения. Например, трибутилфосфин (С 4 Н 9) 3 Р имеет температуру самовоспламенения 200 °С.

Все фосфины характеризуются высокой токсичностью, так как легко взаимодействуют с ферментами живого организма и парализуют нервную систему.

С увеличением длины углеродной цепи радикалов повышается температура кипения и самовоспламенения фосфинов. Первичные фосфины имеют более низкую температуру кипения, чем вторичные; вторичные фосфины имеют более низкую температуру кипения, чем третичные. Так, триамилфосфин (С 5 Н 11) 3 Р имеет температуру плавления 29 °С, а высшие гомологи - более 50 °С.

Фенилфосфин (С 6 Н 6)РН 2 и дифенилфосфин (С 6 Н 5) 2 РН являются бесцветными жидкостями, а трифенилфосфин (С 6 Н 5) 3 Р представляет собой твердое вещество с температурой плавления 80 °С. Жидкие фосфины не ассоциированы и поэтому легко испаряются.

Энергия разрыва связи Р-R довольно велика. Так,
энергия связи фенильного радикала составляет 293-314 кДж/моль, а алкильного радикала 276 кДж/моль. Поэтому при нагревании в атмосфере водорода или инертного газа фосфины начинают разлагаться при температуре более 300°С.

С галогенидами металлов фосфины легко образуют комплексные соединения, которые используются как катализаторы в органическом синтезе. С ненасыщенными соединениями фосфины вступают в реакцию присоединения, образуя вещества с характерными окрасками.

Третичные фосфины легко присоединяют и другие вещества: галогены, серу, сероводород, галоидные алкилы и т. д.

Под действием азотной кислоты первичные и вторичные
фосфины переходят в фосфорсодержащие кислоты, а третичные - в оксиды фосфинов.

Все эти вещества горючи. Производные этих кислот представляют собой либо жидкости, либо твердые вещества. При нагревании плавятся и, не разлагаясь, переходят в жидкость. На воздухе в жидком состоянии устойчивы, но при нагревании до температуры кипения разлагаются. Температура вспышки большинства этих соединений превышает 97 о С. Смеси их паров с воздухом являются взрывоопасными; нижний концентрационный предел воспламенения 0,5 - 0,8% (об.). Однако смеси взрывоопасных концентраций могут образовываться лишь при высоких температурах (выше 100 °С). Горят они ярким пламенем с выделением СО 2 , Н 2 О и Р 2 0 5 .

Производные фосфорсодержащих кислот находят применение в качестве пестицидов, а также в качестве пластификаторов и термостойких присадок в производстве пластмасс. Все эти производные являются весьма
ядовитыми веществами. К этой группе соединений относятся отравляющие вещества: табун, зорин, V-газ.

Производные фосфорсодержащих кислот можно успешно тушить водой, воздушно-механической пеной, диоксидом углерода или азотом.

Диэтилэтилфосфонат (диэтиловый эфир этилфосфоновой
кислоты) представляет собой бесцветную горячую жидкость с неприятным запахом; ядовит, в воде не растворяемся, тяжелее воды, плотность 1025 кг/м 3 при 25°С; при нагревании до 250°С разлагается; температура вспышки 105°С; хорошо тушится водой, воздушно-механической пеной.
Поскольку производные фосфорсодержащих кислот при нагревании до высокой температуры разлагаются с выделением различных веществ, состав которых зависит от температуры и условий процесса разложения, температура самовоспламенения этих веществ изменяется в
определенных пределах и лежит выше 400°С.

Фосфорорганические соединения типа Р-О-С нашли широкое практическое применение как инсектициды, фотореагенты, поверхностно-активные вещества и растворители. Наиболее широко применяют производные фосфористой кислоты Р(ОН) 3 - фосфиты и производные фосфорной кислоты Н 3 Р0 4 - фосфаты.

Неполные фосфиты (диметилфосфит, диэтилфосфит, дипропилфосфит, дибутилфосфит) интенсивно взаимодействуют с окислителями и самовозгораются. Вата, тряпки, стружка и другие подобные материалы, пропитанные этими соединениями, на воздухе самовозгораются.

Хлорпроизводные фосфитов при слабом нагревании разлагаются на галоидные алкилы и оксиды фосфора, энергично взаимодействуют с окислителями. Большинство фосфитов характеризуются как ГЖ. Наиболее опасными являются триметилфосфит, трихлорэтилфосфит. Триметилфосфит -бесцветная легкоподвижная летучая жидкость, с неприятным запахом, не растворимая в воде; при нормальном давлении температура кипения составляет 112°С. В этих условиях кипение не сопровождается разложением. Пары в смеси с воздухом образуют взрывоопасные концентрации. Температура вспышки 54°С. При нагревании до температуры выше 150°С разлагается на этан и оксиды фосфора.

Производные фосфорной кислоты Н 3 РО 4 представляют собой, главным образом, бесцветные с неприятным запахом токсичные жидкости. Температура вспышки выше 100°С. Низшие члены гомологического ряда фосфатов кипят при температуре выше 200 °С без разложения при нормальном давлении. Высшие члены гомологического ряда имеют температуру кипения, превышающую 300°С, причем кипение сопровождается их разложением. Продуктами разложения являются углеводороды и оксиды фосфора.

Температура самовоспламенения фосфатов 350 °С. Фосфаты не растворимы в воде; некоторые из них под действием воды разлагаются, например тригексилфосфат. Горение фосфатов как и других фосфорорганических соединений сопровождается образованием яркого пламени. Самовозгораются они под действием сильных окислителей. Хорошо тушатся водой, воздушно-механической пеной и инертными газами.

Пирофосфаты по степени пожарной опасности характеризуются также, как и фосфаты.

Тиофосфаты - производные тиофосфорной кислоты; представляют собой горючие вещества (жидкие или кристаллические); растворимы в воде; на воздухе устойчивы; могут самовозгораться под действием сильных окислителей; горение сопровождается образованием яркого пламени и выделением оксидов фосфора и серы; такие соединения, как тиофос, фосфомид, применяют в качестве инсектицидов.

Основой для синтеза негорючих термостойких пенопластов служат непредельные фосфонаты. Они легко полимеризуются, образуя фосфорорганические полимеры, которые придают термостойкость текстильным изделиям; используются также в качестве катионообменных смол.

Многие ФОС вследствие особого химического сродства к холинэстеразе ингибируют, т. е. блокируют, ее молекулы посредством взаимодействия с эстеразным центром. Как это видно из приводимой схемы, молекула фосфорор-ганического яда реагирует с гидроксильной группой фермента, причем анионный его центр участия в реакция не принимает:

Однако в начале 50-х годов в Швеции в лаборатории Таммелина были синтезированы такие ФОС, которые реагируют и с анионным центром фермента. При этом химики исходили из предположения, что если яд будет сходен по структуре с естественным субстратом холинэстеразы (ацетилхолином), то он окажет на этот фермент более сильное ингибирующее действие. И действительно, такими мощными антихолинэстеразными веществами оказались соединения, которые содержат в своем составе остаток холина, как например метилфторфосфорилхолин. Совершенно естественно, что при его взаимодействии с холинэстеразой положительно заряженный атом азота будет реагировать с анионным центром фермента. Это обеспечивает дополнительный контакт яда с активной поверхностью холинэстеразы и делает связь между ними более прочной:


Можно представить также одномоментное ингибирование одной молекулой метилфторфосфорилхолнна двух молекул фермента: одну по анионному, вторую - по эстеразному центру. Как бы то ни было, яды Таммелина оказались в десятки раз более токсичными, чем даже такое сильнодействующее ФОС, как зарин. Образовавшаяся фосфорилированная холинэстераза в отличие от ацетилированной является соединением достаточно прочным и не подвергается самопроизвольному гидролизу. Оказалось, что процесс ингибирования холинэстеразы является двухэтапным. Вначале, на первом этапе, происходит обратимое, т. е. непрочное, ее блокирование, и лишь на втором этапе наступает необратимое блокирование фермента. Оба эти этапа являются результатом сложной, до конца еще не выясненной молекулярной перестройка в комплексе "ФОС-холинэстераза". Забегая несколько вперед, отметим значимость данного явления для практики применения некоторых антидотов, действие которых заключается в разрыве химической связи между ядом и ферментом. Таким образом, под влиянием антихолинэсте - разных веществ тормозится разрушение молекул ацетилхолина и он продолжает оказывать непрерывное действие на холинорецепторы. Отсюда следует, что отравление ФОС есть не что иное, как генерализованное перевозбуждение холинорецепторов, вызванное интоксикацией эндогенным, т. е. имеющим внутреннее происхождение, ацетилхолином. Вот почему основные симптомы отравления ФОС можно трактовать как проявление избыточной, нецелесообразной для организма деятельности ряда структур и органов, которая обеспечивается ацетилхолиновой медиацией (прежде всего это - функция нервных клеток, поперечнополосатых и гладких мышц, различных желез).

В настоящее время имеются доказательства непосредственного возбуждающего влияния некоторых ФОС на холинорецепторы. Тем самым не исключается, что ФОС оказывают токсический эффект, минуя холинэстеразный механизм:


В последние 10-15 лет токсикологи все чаще обращают внимание на эту особенность механизма влияния ФОС на биоструктуры. В частности, такое их неантихолинэстеразное действие проявляется в прямом возбуждении Н-холинорецепторов, от чего, как показывают экспериментальные данные, в свою очередь зависят никоти - ноподобные эффекты ФОС. В то же время их мускарино - подобное действие с достаточным основанием теперь рассматривается как результат ингибирования холинэстеразы.

Что касается сравнительной выраженности мускариновых и никотиновых эффектов у различных антихолинэстеразных веществ, то, согласно исследованию В. Б. Прозоровского, * можно рассматривать 3 их группы:

* ( Прозоровский В. Б. Вопросы механизма действия и возрастной токсикологии антихолинэетеразных средств. Автореф. докт. дис. Л.. 1969 )

  • 1) вызывающие преимущественное возбуждение М-холинорецепторов (эзерин, нибуфин, хлорофос);
  • 2) вызывающие возбуждение как М-, так и Н-холинорецепторов (фосфакол, армин, диизопропилфторфосфат);
  • 3) вызывающие преимущественное воздействие на Н-холинорецепторы (прозерин, тиофос, меркаптофос).

Из изложенного следует, по крайней мере теоретически, что при отравлении антихолинэстеразными ядами, в том числе ФОС, антидотами могли бы быть:

  • 1) вещества, вступающие в прямое химическое взаимодействие с ядами;
  • 2) вещества, тормозящие синтез и выход ацетилхолина в синаптическую щель;
  • 3) вещества, замещающие поврежденный ядами фермент (т. е. препараты холинэстеразы);
  • 4) вещества, препятствующие контакту яда с ферментом и тем самым защищающие его от токсического воздействия;
  • 5) вещества, препятствующие контакту ацетилхолина с холинорецептором;
  • 6) вещества, восстанавливающие активность фермента посредством вытеснения яда с его поверхности (т. е. реактивирующие структуру холинэстеразы).

Многочисленные токсикологические эксперименты показали, что всем этим веществам присуща та или иная степень специфического воздействия на токсический процесс, однако наибольшее практическое значение имеют 2 последние группы противоядий. Рассмотрим подробнее механизмы их действия.

В разумных количествах фосфор необходим человеческому организму. Это основа полноценного функционирования его нервной системы, прочности зубов, ногтей и костной ткани. Однако фосфорорганические вещества (ФОВ или ФОС), с которыми человеку приходится сталкиваться в бытовых или рабочих условиях, чрезвычайно токсичны и несут опасность при несоблюдении мер предосторожности. Отравление ФОС может вызвать развитие судорог, впадение человека в состояние комы и даже летальный исход .

Соединения фосфора в быту

Фосфорорганические соединения представляют собой сложные вещества с большим содержанием фосфорных кислот. Чаще всего они представлены в виде твердых либо жидких летучих субстанций с характерным керосиновым запахом. ФОС легко растворяются в жире и плохо растворимы в воде .

Отравление фосфорорганическими соединениями может произойти несколькими способами: через органы пищеварительной и дыхательной систем, при соприкосновении с кожными покровами .

Причинами отравления могут стать:

  • вода, отравленная токсическими препаратами;
  • употребление плохо вымытых фруктов либо овощей, обработанных препаратами с содержанием фосфорорганических веществ;
  • прием нестерилизованного коровьего молока от животного, питавшегося травой, отравленной химикатами;
  • вдыхание паров ФОС при обработке помещений, садов и сельскохозяйственных культур от насекомых.

Признаки отравления ФОС

Фосфорорганические соединения, попавшие внутрь организма человека, моментально всасываются через слизистые оболочки ротовой полости и желудочно-кишечного тракта, после чего проникают в кровь. Опасность интоксикации веществами, содержащими фосфор, заключатся в том, что более половины таких препаратов склонны к преобразованию в организме человека в соединения с более токсичными свойствами . Кроме того такие яды характеризуются циклическим превращением, что ведет к возникновению рецидивов у 10% единожды отравленных людей.

При интоксикации фосфорорганическими соединениями в первую очередь страдает нервная система человека. Отравление ФОВ протекает в 3 стадии:


  • головокружение и головная боль;
  • ухудшение зрения;
  • повышенное пото- и слюноотделение;
  • снижение ритма сердца;
  • мышечная слабость, судороги отдельных мышц;
  • усиление перистальтики кишечника, появление спастических болей, диарея;
  • нарушение дыхательной функции;
  • поражение ЦНС, выражающееся возбуждением, беспокойством, появлением чувства страха, одышкой, перепадами артериального давления, увеличением и снижением температуры тела.
  1. Стадия судорог и гиперкинезов. Симптоматика первого этапа ослабевает, но добавляются дополнительные признаки интоксикации:
  • заторможенность;
  • отсутствие реакции зрачков на свет;
  • ярко выраженный цианоз кожных покровов;
  • тахикардия;
  • повышение, а затем резкое падение артериального давления;
  • отек легких.

У человека наблюдаются гиперкинезы – частое подергивание всех мышц тела, наблюдается общий мышечный гипертонус, судороги. В некоторых случаях на данной стадии происходит развитие токсического гепатита, пневмонии, поражения почек.

  1. Стадия паралича. У человека происходит ослабление всех рефлексов, сужение зрачков, повышение потоотделения. Мышцы тела находятся в паралитическом состоянии, наблюдается нарушение дыхания и признаки экзотоксического шока. Ритм сердца может быть чрезмерно повышенным – свыше 120 ударов в минуту либо слишком сниженным – до 20 ударов в минуту. В ряде случаев наблюдается коматозное состояние больного, признаки коллапса. При остром отравлении может наступить смерть в результате удушья, связанного с нарушениями функционирования дыхательной системы.

Время проявления характерных признаков отравления зависит от пути проникновения токсина в организм. При поступлении большой дозы яда через органы пищеварения первые симптомы интоксикации будут заметны в течение 10-15 минут , спустя 20-30 минут вероятно возникновение коматозного состояния, а по истечении от 3 до 9 часов может наступить смерть. В случае затяжного течения острого отравления летальный исход случается спустя 2-5 дней.

Признаки отравления при проникновении яда через кожу проявляются гораздо позже – через 2-3 суток. В этом случае первыми симптомами интоксикации могут стать головная боль, общая слабость, потливость в месте соприкосновения кожи с ядом.

Диагностика интоксикации

Диагностика отравления фосфорорганическими соединениями начинается с внешних признаков: от больного будет исходить характерный бензиново-чесночный запах . Помимо этого, об интоксикации фосфорорганическими отравляющими веществами будут свидетельствовать нарушение зрения, чрезмерное потоотделение, судороги и подергивания отдельных мышц.

После зрительного осмотра проводится биохимический анализ крови, помогающий подтвердить диагноз. При молниеносном протекании отравления через полчаса после контакта с токсином у человека появляются сильные судороги.

Первая помощь

Учитывая высокую скорость всасывания ФОС в кровь, первая помощь при отравлении должна быть оказана незамедлительно . Мероприятия по ее оказанию зависят от пути проникновения токсинов в организм:

  1. При пероральном приеме фосфорорганических соединений больному делают промывание желудка большим количеством теплой воды либо слабоконцентрированным раствором марганцовки. После очищения желудка отравившемуся человеку необходимо принять активированный уголь или иной сорбент. Можно сделать промывание кишечника солевым и содовым растворами.
  2. При отравлении через органы дыхания необходимо срочно вынести больного на свежий воздух. Рекомендуется сделать ему промывание желудка и вызвать скорую помощь.
  3. При попадании фосфорорганических веществ на кожу место соприкосновения необходимо тщательно промыть прохладной водой с использованием мыла либо полностью окунуть человека в воду. При контакте кожных покровов с чистым фосфором необходимо следить, чтобы пораженный участок всегда был влажным во избежание воспламенения паров вещества с кислородом. Поврежденные участки кожи можно обрабатывать раствором соды.

После оказания доврачебной помощи необходимо безотлагательно доставить больного в медицинское учреждение или вызвать карету скорой помощи.

Правильно и своевременно оказанная первая помощь увеличивает шансы на выздоровление человека даже при незначительном контакте с токсином.

Лечение

Мероприятия, оказываемые в лечебном учреждении, направлены на выведение из организма токсинов и восстановление пораженных органов и систем. Для этого медицинским персоналом выполняются следующие действия:

  • очищение желудка и кишечника, форсированный диурез и гемодиализ;
  • введение глюкозы внутривенно;
  • применение антидотов, к которым относятся диазепам, изонитрозин;
  • введение атропин сульфата в качестве противоядия ;
  • проведение мероприятий, направленных на устранение нарушений ритмов сердца, сердечной и дыхательной недостаточности, паралича дыхания;
  • симптоматическая противошоковая терапия;
  • введение препаратов для борьбы с судорожным состоянием;
  • назначение аденозинтрифосфата и витаминных комплексов для профилактики поражений центральной нервной системы.

Во время лечения отравления ФОС в рационе больного должна присутствовать жирная и молочная пища , способствующая быстрому распределению фосфора.

Профилактика

Во избежание отравления ФОС при работе с ними важно придерживаться следующих правил:

  • носить закрытую одежду во избежание контакта ядовитых веществ с кожей;
  • при попадании токсинов на одежду нужно немедленно снять ее, волосы и ногти – состричь;
  • при работе с фосфорорганическими веществами необходимо соблюдать меры предосторожности: использовать респиратор, не курить и не обедать на рабочем месте;
  • в быту препараты с ФОС необходимо хранить в недоступных для детей местах.

Отравление фосфором в ряде случаев приводит к тяжелым поражениям нервной системы и остальных органов человека . При первых признаках обнаружения интоксикации фосфорорганическими соединениями необходимо срочно обратиться в клинику. Это может спасти жизнь и не допустить хронических заболеваний, связанных с отравлением.

Поражение ФОС людей возможно при авариях на объектах по их производству, при применении в качестве ОВ или диверсионных агентов. ФОС – производные кислот пятивалентного фосфора.

Все ФОС при взаимодействии с водой подвергаются гидролизу с образованием нетоксичных продуктов. Скорость гидролиза ФОС, растворенных в воде, различна (например, зарин гидролизуется быстрее, чем зоман, а зоман – быстрее, чем V-газы).

ФОВ образуют зоны стойкого химическиого заражения.

Прибывающие из зоны заражения, пораженные ФОВ представляют реальную опасность для окружающих.

Токсикокинетика

Отравление происходит при вдыхании паров и аэрозолей, всасывании ядов в жидком и аэрозольном состоянии через кожу, слизистую глаз, с зараженной водой или пищей – через слизистую желудочно-кишечного тракта.

ФОВ не обладают раздражающим действием на месте аппликации (слизистые оболочки верхних дыхательных путей и желудочно-кишечного тракта, конъюнктива глаз, кожа) и проникают в организм практически незаметно. Мало токсичные ФОС способны к относитльно продолжительному персистированию (карбофос – сутки и более). Наиболее токсичные представители, как правило, быстро гидролизуются, окисляются. Период полуэлиминации зарина и зомана составляют около 5 минут, Vх несколько больше. Метаболизм ФОС происходит во всех органах и тканях.

Из организма выделяются только нетоксичные метаболиты веществ и потому выдыхаемый воздух, моча, кал не опасны для окружающих.

Основные проявления интоксикации

Симптомы интоксикации ФОС при ингаляционном поражении развиваются значительно быстрее, чем при поступлении через рот или кожу.

При ингаляции ФОВ смерть может наступить в течение 1-10 минут после воздействия.

В случае поступления ОВТВ с зараженной пищей, симптомы интоксикации развиваются в течение 0,5 часа. Резорбция с поверхности кожи действующей дозы высоко токсичных веществ происходит в течение 1 — 10 минут, однако скрытый период может продолжаться в течение 0,5 — 2 часов.

ФОС оказывают местное и резорбтивное действие. Подавляющее большинство развивающихся эффектов является следствием перевозбуждения мускарин- и никотинчувствительных холинэргических синапсов центральной нервной системы и периферии.

Местное действие проявляется функциональными изменениями органов на месте аппликации: возникновением миоза и гиперемии конъюнктивы при контакте яда со слизистой глаза; гиперемией слизистой оболочки носа и ринорреей – при проникновении ФОС ингаляционным путем; тошнотой, рвотой, спастическими болями в области живота – при попадании ядов внутрь; фибрилляцией подлежащих мышечных групп, пилоэрекцией и выделением капелек пота на зараженном участке кожи.

Однако все явления непродолжительны и в конечном итоге не определяют тяжести интоксикации.

Резорбтивное действие ФОС всегда сопровождается нарушениями со стороны ЦНС, жизненно важных органов и систем: дыхательной, сердечно-сосудистой, а также желудочно-кишечного тракта и др.

Продолжительность этих нарушений и степень их выраженности зависят от количества яда, попавшего в организм, и в известной степени, – от путей проникновения.

Интоксикации могут быть легкими, средней степени тяжести и тяжелыми.

При отравлении легкой степени обычно наблюдается возбуждение, бессонница, головные боли, галлюцинации, чувство страха, апатия, депрессия, легкий тремор.

Зрачки сужены (при поражении незащищенного человека ФОС в парообразной или аэрозольной форме). При этом нарушается зрение, особенно в темноте. Появляется головная боль, затруднение при дыхании, тошнота и другие диспептические явления. При отравлении средней степени тяжести возникают приступы удушья, напоминающие тяжелые приступы бронхиальной астмы. Поэтому такие формы отравления определяются как бронхоспастические.

Приступы, как правило, возобновляются через каждые 10-15 мин, но и в промежутках между ними дыхание остается затрудненным. Отмечается усиленная секреция бронхиальных, слюнных и потовых желез. Отчетливо выражено повышение артериального давления. Отравление нередко сопровождается рвотой, поносом и схваткообразными болями в области живота. Наблюдаются фибриллярные подергивания мышц, в особенности жевательных. Чаще сознание сохранено, но чувство страха, возбуждение, эмоциональная лабильность — нарушают критическое восприятие окружающей обстановки.

Зрачки резко сужены. Симптомы интоксикации отмечаются в течение 2-3 суток и более. При тяжелых поражениях развивается судорожный синдром. Если отравление не заканчивается летальным исходом от остановки дыхания впервые 10-30 минут, развивается кома. Кожа бледная, влажная, с резко выраженным акроцианозом. Наблюдается непрекращающаяся фибрилляция всех групп мышц, тремор. Дыхание дезорганизовано из-за периодически возникающих приступов удушья.

Также отмечаются гипотензия и брадикардия. Зрачки сужены (однако миоз может сменяться мидриазом), реакция зрачков на свет отсутствует. Изо рта и носа выделяется пенистая жидкость. Наблюдается непроизвольное мочеиспускание и дефекация, а в особо тяжелых случаях – развивается полная арефлексия. Смерть может наступить в течение ближайших часов или первых суток после начала отравления, от остановки дыхания, реже — сердечной деятельности.

При благоприятном исходе на протяжении длительного времени (1,5-2 месяца и более) у таких пораженных сохраняется общая слабость, астенизация, повышенная раздражительность, нарушение сна, устрашающие сновидения, головокружение, головная боль и другие невротические расстройства, составляющие астенический симптомокомплекс.

Нередко, особенно при поражении зоманом или длительно персистирующими в организме отравленного ФОС, в периоде выздоровления у пострадавших развиваются признаки нейропатий (нарушения кожной чувствительности, мышечная слабость, как правило, дистальных групп мышц). Кроме того, могут возникать пневмония, острая сердечно-сосудистая недостаточность (причина поздней гибели), нарушение функции желудочно-кишечного тракта (тошнота, расстройство стула, боли в эпигастральной области), печени и почек.

Механизм токсического действия

В основе гиперактивации холинэргических механизмов передачи нервного импульса в ЦНС и на периферии лежит:

Антихолинэстеразное действие ФОС (угнетение активности ацетилхолинэстеразы):

ФОС являются ингибиторами АХЭ, практически необратимо взаимодействующими с ее активным центром. В результате их действия угнетается процесс разрушения АХ в синапсах.

Медиатор накапливается в синаптической щели и вызывает стойкое перевозбуждение постсинаптических холинэргических рецепторов (непрямое холиномиметическое действие ФОС). Перевозбуждение холинорецепторов избытком ацетилхолина приводит к стойкой деполяризации постсинаптических мембран, иннервируемых клеток. Таким образом, отравление ФОС, по сути, — отравление эндогенным ацетилхолином, накапливающимся в крови и тканях, вследствие прекращения его разрушения ферментом ацетилхолинэстеразой.

Способность ФОС взаимодействовать с активным центром энзима объясняют структурным сходством молекул ядов с молекулой ацетилхолина.

Взаимодействие ФОС с активным центром ацетилхолинэстеразы приводит к образованию прочной ковалентной связи атома фосфора с гидроксильным радикалом серина, входящего в структуру эстеразного участка активного центра холинэстеразы, вызывая его фосфорилирование.

Взаимодействие ФОС и АХЭ проходит в две фазы и может быть представлено следующим образом:

Процесс превращения образовавшейся в первой фазе обратимо фосфорилированной холинэстеразы в необратимо связанную форму называется “старение” фосфорилхолинэстеразы.

Скорость “старения”, зависит от структуры ФОС, а именно от строения алкильных радикалов при атоме фосфора. Чем “тяжелее” радикалы, тем ниже скорость “спонтанной реактивации” и выше скорость “старения”. Поэтому АХЭ, ингибированная VX (R -OC2H5), стареет чрезвычайно медленно, зарином (R -OCН(СH3)2) — в течение нескольких часов, зоманом (R -OCНСН3С(СH3)3) — в считанные минуты.

В основе “старения” лежит процесс отщепления от атома фосфора, связанного с активным центром энзима, алкильных радикалов. При этом одновременно изменяется конформация белковой части энзима.

2. Холиносенсибилизирующее действие ФОС(непосредственное взаимодействие с холинорецепторами, сопровождающееся прямым холиномиметическим эффектом, повышением чувствительности холинорецепторов к ацетилхолину и холиномиметикам). Действие на холинорецепторы. Из возможных неантихолинэстеразных механизмов наиболее важным является действие ФОС на холинорецепторы.

Поскольку и холинорецепторы, и холинэстераза адаптированы к одному и тому же нейромедиатору, ингибиторы холинэстеразы могут проявить активность и по отношению к холинорецепторам.

По-видимому, блокада проведения нервно-мышечного сигнала, развивающаяся при смертельной интоксикации ФОС, связана не только со стойким деполяризующим действием избыточного количества ацетилхолина, но и с прямым действием ФОС на нервно-мышечные синапсы (по типу действия деполяризующих миорелаксантов).

Так, в эксперименте на изолированном нервно-мышечном препарате млекопитающего, при внесении в инкубационную среду достаточной дозы ФОС, наблюдается полное прекращение передачи нервного импульса с нервного волокна на мышцу.

Однако через некоторое время на фоне практически “тотального” угнетения активности холинэстеразы отмечается восстановление нервно-мышечной проводимости в синапсах.

Повторно блок можно вызвать, вновь добавив ФОС в инкубационную среду.

Сенсибилизирующее действие на холинорецептор зарина, ДФФ и других ФОС, проявляется, в частности, существенным повышении чувствительности отравленных экспериментальных животных к холиномиметикам, негидролизуемым ацетилхолинэстеразой (никотину, ареколину и т.д.). Установлено, что сенсибилизация к М-холиномиметикам (ареколину) сохраняется значительно дольше, чем к Н-холиномиметикам (никотину).

Причины различия, вероятно, обусловлены особенностями проведения нервных импульсов в М- и Н-холинэргических синапсах (см. выше).

Восстановление нормального проведения нервного импульса у лиц, перенесших интоксикацию ФОС, осуществляется за счет медленно протекающих процессов дэфосфорилирования АХЭ (“спонтанная реактивация”), синтеза АХЭ в перикарионе нервных клеток de novo и транспорта ее в нервные окончания, снижения содержания ацетилхолина в синаптической щели, десенситизации холинорецепторов (понижение чувствительности к ацетилхолину).

Нехолинэргические механизмы токсического действия. Помимо действия на холинореактивные структуры, ФОС, в высоких дозах, обладают прямым повреждающим действием на клетки различных органов и тканей (нервной системы, печени, почек, системы крови и т.д.), в основе которого лежат общие механизмы цитотоксичности: нарушение энергетического обмена клетки; нарушение гомеостаза внутриклеточного кальция; активация свободнорадикальных процессов в клетке; повреждение клеточных мембран.

Чем менее токсично ФОС, тем значимее роль указанных механизмов в развитии проявлений тяжелого поражения данным токсикантом. Существуют ФОС полностью лишенные антихолинэстеразной активности, токсичность которых обусловлена исключительно их цитотоксическим действием (три-о-крезилфосфат). Клиника отравления такими веществами полностью отличается от описанной выше.

В основе клиники лежат общие механизмы цитотоксичности:

— нарушение энергетического обмена клетки;

— нарушение гомеостаза внутриклеточного кальция;

— активация свободнорадикальных процессов в клетке;

— повреждение клеточных мембран.

Фосфорорганические соединения

Фосфорорганические соединения нашли применение как инсектициды (хлорофос, карбофос, фосдрин, лептофос и др.), лекарственные препараты (фосфакол, армин и т.д.), наиболее токсичные представители группы приняты на вооружение армий целого ряда стран в качестве боевых отравляющих веществ (зарин, зоман, табун, Vx).

Поражение ФОС людей возможно при авариях на объектах по их производству, при применении в качестве ОВ или диверсионных агентов.

Впервые ФОС были синтезированы Тенаром в 1846 г.

В нашей стране основоположником химии ФОС был А.Е. Арбузов, предложивший в 1905 г. новый метод их синтеза. На токсические свойства этих соединений внимание было обращено только в 1932 г., когда Ланге и Крюгер впервые описали симптомы отравления диметил- и диэтилфторфосфатом, синтезированных в процессе поиска новых инсектицидов. Бесспорная практическая значимость таких средств явилась причиной масштабных исследований, направленных на всестороннее изучение нового класса биологически активных веществ.

Так, за короткий промежуток времени только в Германии, в лаборатории Шрадера, с целью изыскания все новых средств борьбы с вредными насекомыми было синтезировано и изучено более 2000 ФОС, среди которых многие обладали высокой токсичностью и для млекопитающих. Это послужило поводом для создания на их основе новых образцов химического оружия. К началу второй мировой войны химиками Германии были синтезированы такие высокотоксичные отравляющие вещества, как табун, зарин, несколько позже – зоман.

Одновременно были определены перспективы изыскания еще более токсичных для человека соединений, что на практике было реализовано Таммелином (1955), синтезировавшим метилфторфосфорилхолин, явившийся прообразом новой группы ФОВ, обозначаемых как V-газы (Vх).

В 70 — 80х годах 20 столетия была разработана технология применение ФОВ в так называемых бинарных боеприпасах. При этом два относительно мало ядовитые химические соединения хранятся, транспортируются и размещаются в боеприпасах раздельно.

Компоненты смешиваются лишь после выстрела и образуют на пути к цели, в ходе химической реакции, высокоядовитое ОВ. Чрезвычайно высокая токсичность и особенности физико-химических свойств, позволяющие быстро создавать обширные очаги химического заражения, до недавнего времени делали ФОВ (зарин, зоман, V-газы) наиболее опасными из всех известных ОВ. В соответствии с международными договоренностями, запасы ФОВ в большинстве стран мира подлежат уничтожению.

В настоящее время исследования в области создания все новых биологически активных веществ на основе ФОС продолжаются.

Сейчас это, как и в начале 30х годов 20 века, в основном, поиск инсектицидов, которых на сегодняшний день известны сотни наименований.

Физико-химические свойства.

Симптомы и первая помощь при отравлении ФОС

Токсичность

ФОС – производные кислот пятивалентного фосфора. Все токсичные соединения фосфорной (1), алкилфосфоновой (2) и диалкилфосфиновой (3) кислот имеют структуру:

Фосфор с помощью двойной связи соединен с атомом кислорода или серы; двумя связями — с алкил-, алкокси- арил-, моно- или диалкиламиногруппами и т.д.

(R1, R2); пятая (Х) — насыщена группой, относительно легко отщепляющейся от атома фосфора (F-, CN-, -ОR, -SR и т.д.).

За счет высвобождающейся при этом валентности, ФОС и взаимодействует с активными центрами ряда энзимов.

Структурные формулы некоторых ФОС представлены на рисунке 46.

Рисунок 46.

Структура некоторых фосфорорганических соединений

Биологическая активность ФОС, в том числе и токсичность, зависит от их строения (табл.

Таблица 43.

Токсичность (ЛД50) некоторых ФОС для белых мышей

Название вещества Способ введения Токсичность, мг/кг
О,О-Диметил-S-(1,2-дикарбоэтоксиэтил)дитиофосфат (карбафос, малатион) через рот 400 — 930
О,О-Диметил-О-(2,2-дихлорвинил)фосфат (ДДВФ, дихлорофос) через рот 75 — 175
Диэтил-(4-нитрофенил)-тиофосфат (паратион) через рот внутрибрюшинно 25,0 5,5
Диэтил-(4-нитрофенил)-фосфат (фосфакол, параоксон) подкожно 0,8
Диизопропилфторфосфат (ДФФ) через рот подкожно внутривенно 36,8 0,4
N,N-диметиламидо-О-этилцианфосфат (табун) подкожно внутрибрюшинно внутривенно 0,6 0,6 0,15
О-изопропилметилфторфосфонат (зарин) подкожно внутрибрюшинно 0,2 0,2
О-диметилизобутилметилфторфосфонат (зоман) подкожно 0,06
О,О-диэтоксифосфорилтиохолин подкожно внутрибрюшинно 0,26 0,14
Метилфторфосфорилгомохолин внутрибрюшинно внутривенно 0,05 0,006

Все ФОС обладают высокой реакционной способностью.

Особое значение придают реакциям фосфорилирования, гидролиза и окисления, поскольку именно эти реакции определяют стойкость токсикантов в окружающей среде, имеют отношение к метаболизму и механизму токсического действия ядов в организме, на них основаны некоторые принципы дегазации, обнаружения, антидотной профилактики и терапии интоксикаций.

ФОС легко отдают электроны, активно вступают в реакции с электрофильными группами других соединений и за счет этого фосфорилируют многие вещества (аминокислоты, полифенолы, гидроксиламин, гидроксамовые кислоты и др.).

В качестве примера приводим реакцию фосфорилирования зарином гидроксиламина:

Все ФОС при взаимодействии с водой подвергаются гидролизу с образованием нетоксичных продуктов.

Скорость гидролиза ФОС, растворенных в воде, различна (например, зарин гидролизуется быстрее, чем зоман, а зоман – быстрее, чем V-газы).

В общей форме реакция гидролиза может быть представлена следующим образом:

Реакция гидролиза ФОС с разрывом ангидридной связи происходит и в организме, как спонтанно, так и при участии энзимов.

В результате реакции окисления, ФОС также разрушаются, однако в ряде случаев (при окислении фосфотионатов до фосфатов) некоторые вещества даже повышают свою активность.

Это иллюстрируется примером

Токсичность параоксона для млекопитающих и человека выше, чем паратиона.

Важнейшие свойства фосфорорганических отравляющих веществ представлены в таблицах 44-46.

Таблица 44.

Основные свойства зарина

Зарин
Химическое название изопропил метилфосфонофторид
Агрегатное состояние бесцветная жидкость, пары бесцветны
Молекулярный вес 140,10
Плотность пара (по воздуху) 4,86
Плотность жидкости 1,089
Точка кипения 1580С
11300 (при 200С)
Температура разрушения полное разрушение в течение 2,5 часов при 1500
Растворимость в воде (%)
Скорость гидролиза зависит от рН.

Период полураспада при рН 1,8: 7,5 часов; в незабуференной среде — 30 часов; быстрый гидролиз в щелочной среде.

Продукт гидролиза в кислой среде НF; в щелочной среде изопропиловый спирт и полимеры
Растворимость в липидах хорошая
Стабильность при хранении стабилен в стальных контейнерах при 650.

Чем чище вещество, тем стабильнее

Действие на металлы легкое коррозийное
Запах Отсутствует
100 мг.мин/м3- в состоянии покоя; 35 мг.мин/м3 — при физической нагрузке
Средненепереносимая токсодоза (ингаляционно) 75 мг.мин/м3 — в покое; 35 мг.мин/м3 — при физической нагрузке
Скорость детоксикации быстро детоксицируется;
Кожные эффекты (жидкость) среднесмертельная доза 1,7 г/человека.

Жидкость не повреждающая кожу, но легко пенетрирующая во внутренние среды. Необходима немедленная деконтаминация кожных покровов. Пары также проникают через неповрежденную кожу.

Среднесмертельная токсодоза (пара через кожу, при защищенных органах дыхания) 12000 мг.мин/м3 для обнаженного человека, 15000 мг.мин/м3, для человека, находящегося в обычном обмундировании
Средненепереносимая токсодоза (пара через кожу) 8000 мг.мин/м3 для человека в обычном обмундировании
Стойкость Зависит от средств доставки и погодных условий (в среднем — до 5 суток)

Таблица 45.

Основные свойства зомана

Зоман GD
Химическое название пинаколиловый эфир метилфторфосфоновой кислоты
Агрегатное состояние бесцветная жидкость; бесцветный пар
Молекулярный вес 182,2
Плотность пара (по воздуху) 6,33
Концентрация пара в воздухе (мг/м3) 3000 (при 200С)
Плотность жидкости 1,02
Температура кипения 1980
Температура разрушения нестабилизированное вещество разрушается при 1300 в течение 4 часов, стабилизированное — 200 часов
Растворимость в воде (%) 1,5
Скорость гидролиза зависит от рН; в присутствии NaOH(5%) полное разрушение в течение 5 минут; период полуразрушения при рН 6,65 и 250 — 45 часов
Продукт гидролиза НF
Растворимость в липидах Высокая
Стабильность при хранении менее стабилен, чем GB
Запах фруктовый; при наличии примеси — камфорный
Среднесмертельная токсодоза (ингаляционно) 70-100 мг.мин/м3
Кожные эффекты чрезвычайно токсичен при действии через кожу.

Кожу не повреждает, но быстро абсорбируется.

Средненепереносимая доза через кожу (жидкая форма) 0,35 г/человека
Необходимость защиты противогаз, защита кожных покровов. Обычное обмундирование задерживает пары в течение 30 минут после контакта. Перед снятием противогаза необходимо удалять обмундирование, зараженное капельно-жидким ОВ
Стойкость зависит от способа применения и погодных условий.

Крупные проливы персистируют на местности в течение 1-2 недель при обычной погоде

Таблица 46.

Не нашли то, что искали?

Воспользуйтесь поиском гугл на сайте:

ФОСФОРОРГАНЙЧЕСКИЕ СОЕДИНЕНИЯ - органические соединения, содержащие в своем составе фосфор, связанный с молекулой органического соединения либо фос-фор-углеродной связью, либо через гетероатом - кислород, азот, серу. Ф. с., являющиеся неполными эфирами фосфорных кислот (см.), играют чрезвычайно важную биол. роль; к таким соединениям принадлежат нуклеиновые кислоты (см.), фосфолипиды (см.

Фосфатиды), фосфопротеиды (см.) и др. Некоторые Ф. с. применяют в качестве лекарственных средств. Особый интерес представляют синтетические физиологически активные соединения, являющиеся полными эфирами или амидами фосфорных к-т, с общей формулой RiR2P (О или S)X, где Ri и R2 - алкильные или алкокс ильные радикалы, замещенные амиды, X - кислотная группа (фтор, нитрофенолы, меркаптаны, ангидридные группы).

Биол. активность Ф. с. этой группы связана с тем, что они выступают в качестве ингибиторов (см.) холинэстераз (см. Антихолинэстеразные средства). В основе классификации и общепринятой номенклатуры таких Ф. с. лежат фосфорные к-ты, производными к-рых они являются. Так, хим. название армина (см.), производного этил-фосфоновой к-ты, - О-этил-О-м-нит-рофеяилэтилфосфояат.

Характеристики отдельных представителей Ф. с. смотри в статьях Антихолинэстеразные средства, Ар-мин, Нибуфин, Нервно-паралитические отравляющие вещества, Пи-рофос, Фосфакол, Хлорофос.

Механизм в з а и м о д е fi-ст в и я ф о с ф о р о р г а н и ч е-с к и х соединений с холин-э с т e р а з а м и.

Эстеразный центр активной поверхности холинэстераз (см.) включает по крайней мере две функционально важные группировки - имидазол остатка гистидина (см.) и гидроксильную группу остатка серина (см.). При сорбции Ф. с. на каталитической поверхности холинэстеразы (ХЭ) между фос-форильным кислородом Ф.

Отравление фосфорорганическими соединениями

с., ими-дазолом гистидина и гидроксильной группой серина через систему водородных связей образуется циклический фермент-ингибиторный комплекс, аналогичный по структуре фермент-субстратному комплексу Михаэлиса (см. Ферменты). Перераспределение электронов приводит к отщеплению кислотной группы Н X и образованию фосфорилирован-ной по гидроксильной группе серина ХЭ, причем такое промежуточное соединение в отличие от ацилирован-ной ХЭ (при ее реакции с субстратом) практически неспособно к гидролитическому отщеплению фосфо-рильной группы и восстановлению активности фермента (см.

Фосфорилирование). Это определяет необратимый характер угнетения ХЭ под действием Ф. с., однако гидролиз фосфорилированной ХЭ может произойти под действием нуклеофильных реагентов - реактиваторов. Количественной мерой анти-ферментного действия Ф. с. служит бимолекулярная константа скорости реакции ки (М-1* сек»1- или М»1* мин-1). Ранее такой мерой служила величина концентрации Ф. с., вызывающая угнетение ХЭ на 50% (I50, М).

При развитии острой интоксикации Ф. с. ведущую роль играет их антихолинэстеразный эффект. Предполагают, что определенное значение имеет неантихолинэстеразное действие Ф. с. непосредственно на холинорецептор.

Метаболизм фосфорор-г а н и ч е с к и х соединений.

По гипотезе В. И. Розенгарта, все метаболические превращения Ф. с. приводят к образованию более полярных продуктов, что облегчает их выведение из организма, и в основном протекают под действием определенных групп ферментов, относящихся к классам гидролаз (см.), трансфераз (см.), оксидоредуктаз (см.). В организме Ф. с. подвергаются и неферментативным превращениям, напр, отщеплению молекулы соляной к-ты в процессе метаболизма хлорофоса, тионтиольной изомеризации.

Метаболические превращения Ф. с. в организме могут приводить как к инактивации (детоксикации) фосфорорганических соединений, так и к их активации.

Практическое применение фосфорорган и чески х соединений. Основное практическое использование Ф. с. в качестве акарицидов (см.) и инсектицидов (см.) связано гл. обр. с их высокой биол. эффективностью и с быстрой детоксикацией (по сравнению, напр., с хлорорганическими соединениями). К серьезным недостаткам Ф. с. относится их определенная токсичность в отношении человека и домашних животных и легко возникающая резистентность к ним у членистоногих (см. Гербициды, Дезинсицирующие средства, Ларвициды, Пестициды).

Чрезвычайно важную роль сыграли Ф. с. в исследованиях свойств ХЭ, полученных из различных источников. С помощью большой группы специально синтезированных Ф. с., имеющих неполярные углеводородные радикалы, на каталитической поверхности молекул ХЭ были обнаружены гидрофобные участки, имеющие большое значение в проявлении этими ферментами субстратной специфичности.

Ф. с. в качестве лекарственных средств применяют при лечении глаукомы, для предупреждения и лечения послеоперационной атонии желудка и кишечника, а также при травмах и воспалительных заболеваниях органов жел.-киш. тракта (см. Антихолинэстеразные средства, Армин, Нибуфин).

Библиогр.: О’Брайн Р. Токсические эфиры кислот фосфора, пер. с англ., М., 1964, библиогр.; Розен гарт В. И. и Шерстобитов О. Е. Избирательная токсичность фосфорорганических инсектоакарицидов, Л., 1978; Сады-

С. и др. Холинэстеразы, Активный центр и механизм действия, Ташкент, 1976; Химия и применение фосфор^ органических соединений, Труды Первой конференции, под ред. А. Е. Арбузова, М., 1957; Е to М. Organophosphorus

pesticides, Organic and biological chemistry, Clevelend, 1976, bibliogr. E. В. Розенгарт.

1 2 3 4 5 6 7 8 9 … 26

М-, Н-холиномиметики

Разберем группу средств, относящихся к М-, Н-холиномиметикам. К средствам, прямо стимулирующим М- и Н-холинорецепторы (М-, Н-холиномиметикам) относятся ацетилхолин и его аналоги (карбахолин). Ацетилхолин, является медиатором в холинергических синапсах, представляет собой сложный эфир холина и уксусной кислоты и относится к моночетвертичным аммониевым соединениям.

В качестве лекарственного средства его практически не применяют, так как он действует резко, быстро, практически молниеносно, очень кратковременно (минуты).

При приеме внутрь неэффективен, так как гидролизуется. В виде хлорида ацетилхолин используют в экспериментальной физиологии и фармакологии.

Ацетилхолин оказывает прямое стимулирующее влияние на М- и Н- холинорецепторы. При системном действии ацетилхолина (в/в введение недопустимо, так как резко понижается АД) преобладают М-холиномиметические эффекты: брадикардия, расширение сосудов, повышение тонуса и сократительной активности мышц бронхов, ЖКТ.

Перечисленные эффекты аналогичны тому, что наблюдаются при раздражении соответствующих холинергических (парасимпатических) нервов. Стимулирующее влияние ацетилхолина на Н-холинорецепторы вегетативных ганглиев также имеет место, но оно маскируется М-холиномиметическим действием. Ацетилхлин вызывает стимулирующий эффект и на Н-холинорецепторы скелетных мышц.

В связи со сказанным, в дальнейшем основное внимание уделим антихолинэстеразным средствам.

Антихолинэстеразные средства (АХЭ)

Антихолинэстеразные средства (АХЭ) — это лекарственные средства, оказывающие свое действие путем ингибирования, блокирования ацетилхолинэстеразы.

Ингибирование фермента сопровождается накоплением медиатора ацетилхолина в области синапса, т. е. в области холинореактивных рецепторов. Под влиянием антихолинэстеразных средств замедляется скорость разрушения ацетилхолина, который и проявляет более длительное действие на М- и Н-холинорецепторы. Таким образом, эти препараты действуют аналогично М, Н-холиномиметикам, но эффект антихолинэстеразных средств опосредован через эндогенный (собственный) ацетилхолин.

В этом заключается основной механзим действия антихолинэстеразных средств. Следует добавить, что данные средства обладают также некоторым и прямым возбуждающим действием на М, Н-холинорецепторы.

Исходя из стойкости взаимодействия антихолинэстеразных препаратов с ацетилхолнэстеразой, их подразделяют на 2 группы:

  1. АХЭ средства обратимого действия. Их действие длится 2-10 часов. К ним относятся: физостигмин, прозерин, галантамин и другие.
  2. АХЭ средства необратимого типа действия.

    Эти средства очень мощно связываются с ацетилхолинэстеразой на много дней, даже месяцев. Однако постепенно, примерно через 2 недели активность энзима может восстанавливаться.

    К данным средствам относятся: армин, фосфакол и другие антихолинэстеразные средства из группы фосфорорганических соединений (инсектициды, фунгициды, гербициды, БОВ).

Эталонным средством группы обратимо действующих АХЭ средств является ФИЗОСТИГМИН(3-4 часа) (его длительное время использовали как оружие и как средство правосудия, так как согласно поверию, от яда погибает лишь истинно виновный человека), являющийся природным алкалоидом из калабарских бобов, т.е.

высушенных зрелых семян западно-африканского вьющегося дерева Physotigma venenosum. В нашей стране чаще используется ПРОЗЕРИН (таблетки по 0,015; ампулы по 1 мл 0,05%, в глазной практике — 0,5%; Proserinum), являющийся, как и другие средства этой группы (галантамин, оксазил, эдрофоний и др.), синтетическим соединением. Прозерин по химическому строению представляет собой упрощенный аналог физостигмина, содержащий четвертичную аммониевую группу. Это отличает его от физостигмина.

В связи с однонаправленностью действия всех перечисленных препаратов у них будут практически общие эффекты.

Значительный практический интерес представляет влияние АХЭ средств как природных, так и синтетических на некоторые функции:

  1. глаза;
  2. тонус и моторику ЖКТ;
  3. нервно-мышечную передачу;
  4. мочевого пузыря;

Прежде всего, разберем эффекты прозерина, связанные с его воздействием на М-холинорецепторы.

Антихолинэстразные средства, в частности прозерин, влияют на глаз следующим образом:

  1. вызывают сужение зрачка (миоз — от греческого — myosis — закрывание), что связано с опосредованным возбуждением М-холинорецепторов круговой мышцы радужки (m.sphincter puрillae) и сокращением этой мышцы;
  2. снижают внутриглазное давление, что является результатом миоза. Радужка при этом становится тоньше, в большей степени раскрываются углы передней камеры глаза и в связи с этим улучшается отток (реабсорбция) внутриглазной жидкости через Фонтановы пространства и Шлеммов канал.
  3. прозерин, как все АХЭ, вызывает спазм аккомодации (приспособления).

    В этом случае, средства опосредованно стимулируют М -холинорецепторы ресничной мышцы (m.ciliaris), имеющей только холинергическую иннервацию. Сокращение указанной мышцы расслабляет Циннову связку и, соответственно, увеличивает кривизну хрусталика. Хрусталик становится более выпуклым, а глаз устанавливается на ближнюю точку видения (вдаль плохо видит).

    Исходя из сказанного, становится понятным, почему прозерин иногда используется в офтальмологической практике. В этом плане прозерин показан при открытоугольной форме глаукомы (0,5% р-р 1-2 капли 1- 4 раза в день)-для купирования приступа.

Прозерин оказывает стимулирующее влияние на тонус и двигательную активность (перистальтику) ЖКТ, за счет чего улучшается продвижение содержимого, усиливает тонус бронхов (вызывает бронхоспазм), а также тонус и сократительную активность мочеточников.

Одним словом, АХЭ, в частности прозерин, усиливают тонус всех гладкомышечных органов. Кроме того, прозерин усиливает секреторную активность желез внешней секреции (слюнных, бронхиальных, кишечника, потовых) за счет ацетилхолина.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА.

Прозерин обычно снижает частоту сокращений сердца и обладает тенденцией к снижению АД.

Использование прозерина в клинической практике связано с перечисленными его фармакологическими эффектами. Благодаря тонизирующему его влиянию на тонус и сократительную активность кишечника и мочевого пузыря препарат используется для устранения послеоперационных атонии кишечника и мочевого пузыря. На значают в виде таблеток или инъекции под кожу.

ЭФФЕКТЫ ПРОЗЕРИНА (АХЭ) ПРИ ДЕЙСТВИИ НА Н-ХОЛИНОРЕЦЕПТОРЫ (НИКОТИНОПОДОБНЫЕ ЭФФЕКТЫ).

Никотиноподобные эффекты прозерина проявляются в облегчении:

  1. нервно-мышечной передачи
  2. передачи возбуждения в вегетативных ганглиях.

В результате этого прозерин вызывает значительные повышение силы сокращения скелетных мышц, а благодаря этому показан к применению у больных с миастенией. Miasthenia gravis — нервно мышечное заболевание с двумя характерными, протекающими параллельно процессами:

а) поражение мышечной ткани по типу полимиозита (аутоиммунные нарушения);

б) поражение синаптической проводимости, синаптический блок (синтез Ацетилхолина меньше, затруднение его освобождения, недостаточная чувствительность рецепторов).

Клиника: мышечная слабость и резкая утомляемость. Кроме того, препарат используется в неврологической практике при параличах, парезах, возникающих после механических травм, после перенесенного полиомиелита (остаточные явления), энцефалита, неврита зрительного нерва, при невритах. В связи с тем, что прозерин облегчает передачу возбуждения в вегетативных ганглиях, он показан при отравлениях ганглиоблокаторами. Кроме того, прозерин эффективен при передозировке миорелаксантов (мышечная слабость, угнетение дыхания) антидеполяризующего действия (в/в до 10-12 мл 0,05% р-ра) например d-тубокурарином.

Иногда прозерин назначают при слабости родовой деятельности (раньше чаще, сейчас очень редко). Как видно, у препарата широкий спектр деятельности, в связи с этим есть и побочные реакции.

Побочные эффекты: эффект однократно введенной дозы прозерина проявляется через 10 минут и продолжается до 3-4 часов.

При передозировке или повышенной чувствительности могут быть такие нежелательные реакции как усиление тонуса кишечника (вплоть до поноса), брадикардия, бронхоспазм (особенно у лиц, склонных к этому).

Выбор препаратов АХЭ средств определяется их активностью, способностью проникать через тканевые барьеры, длительностью действия, наличием раздражающих свойств, токсичностью. При глаукоме используют прозерин, физостигмин, фосфакол.

Следует подчеркнуть, что галантамин с этой целью не используют, так как он оказывает раздражающее действие и вызывает отек коньюнктивы.

ГАЛАНТАМИН — алкалоид подснежника кавказкого — имеет практически те же показания к применению, что и прозерин. В связи с тем, что он лучше проникает через ГЭБ (третичный амин, а не четвертичный, как прозерин), он более показан при лечении остаточных явлений после полиомиелита.Действует 6-8 часов.

Для резорбтивного действия назначают (т.

е. действия после всасывания) ПИРИДОСТИГМИН и ОКСАЗИЛ, влияниеие которых более продолжительно, чем прозерина. Противопоказания: эпилепсия, гиперкинезн, бронхиальная астма, стенокардия, атеросклероз, у больных с нарушением глотания и дыхания.

ВТОРАЯ ГРУППА АХЭ СРЕДСТВ — АХЭ средства «необратимого» типа действия. Здесь, по-существу, одно лекарство, фосфорорганическое соединение — органический эфир фосфорной кислоты — ФОСФАКОЛ.

Phosphacolum — флаконы по 10 мл 0,013% и 0,02% растворов. Высочайшая токсичность свойственна препарату, поэтому используется только местно в отфальмологической практике. Отсюда и показания к применению:

  1. острая и хроническая глаукома;
  2. при прободении роговицы; выпадении хрусталика (искусственный хрусталик, нужен длительный миоз).

    Фармакологические эффекты те же, что и у прозерина в отношении глаза. Следует сказать, что в офтальмологии растворы прозерина и фосфакола в настоящее время используются редко.

Второй препарат — армин (Arminum) – эфир этилфосфоновой кислоты, ФОС входит в группу сильнодействующих, длительно действующих препаратов. Обладает высокой токсичностью (гиперактивация центральных и периферических холинергических систем).

В малых концентрациях используется как местный миотический и противоглаукоматозный препарат. Выпускается в виде глазных капель (0,01% раствора по 1- 2 капли- 2-3 раза в день).

Значительный интерес представляют для врача другие ФОС, такие как инсектициды, фунгициды, гербициды, так как существенно увеличилось число отравлений данными веществами.

Фармакологические эффекты органических соединений фосфора обусловлены накоплением эндогенного (общего) ацетилхолина в тканях вследствие стойкого ингибирования ацетилхолинэстеразы. Острые отравления ФОС требуют безотлагательной помощи.

ПРИЗНАКИ ОТРАВЛЕНИЯ ФОС И АХЭ ВЕЩЕСТВАМИ ВООБЩЕ.

Отравления ФОС имеют очень характерную клиническую картину.

Отравление фосфорорганическими соединениями: симптомы, антидоты и неотложная помощь

Состояние больного обычно тяжелое. Отмечаются эффекты мускаринового и никотинового типа. Прежде всего у больного обнаруживается:

  1. спазм зрачка (миоз);
  2. сильнейший спазм ЖКТ (тенезмы, боли в животе, диарея, рвота, тошнота);
  3. тяжелый спазм бронхов, удушье;
  4. гиперсекреция всех желез (слюнотечение, отек легких — булькание, хрипы, чувство стеснения за грудиной, одышка);
  5. кожа мокрая, холодная, липкая.

Все перечисленные эффекты связаны с возбуждением М-холинорецепторов (мускариновые эффекты) и соответствуют клинике при отравлении грибами (мухоморами), содержащими мускарин.

Никотиновые эффекты проявляются судорогами, подергиваниями мышечных волокон, сокращениями отдельных групп мышц, общей слабостью и параличом вследствии деполяризации.

Со стороны сердца может отмечаться как тахикардия, так и (чаще) брадикардия.

Центральные эффекты отравлений ФОС реализуются головокружением, возбуждением, спутанностью сознания, гипотензией, угнетением дыхания, комой. Смерть обычно наступает вследствие недостаточности дыхательной функции.

Что делать? Какие меры и в какой последовательности проводить? В соответствии с рекомендациями ВОЗ, «лечение должно быть начато незамедлительно». При этом меры помощи должны быть полными и всесторонними.

Прежде всего, следует удалить ФОС с места введения.

С кожных покровов и слизистых ФОС следует смыть 3-5% раствором НАТРИЯ ГИДРОКАРБОНАТА или просто водою с мылом. При интоксикации вследствие попадания веществ внутрь, необходимо промывание желудка, назначение адсорбирующих и слабительных средств, используют высокие сифонные клизмы. Эти мероприятия проводят многократно. Если ФОС попало в кровь, ускоряют его выведение с мочой (форсированный диурез).

Эффективно применение ГЕМОСОРБЦИИ, гемодиализа и перитонеального диализа.

Важнейшим компонентом лечения острых отравлений ФОС является медикаментозная терапия. Если при отравлении ФОС наблюдается перевозбуждение М-холинорецепторов, то логично использование антагонистов — М-холиноблокаторов.

Прежде всего, следует в/ в ввести АТРОПИН в больших дозах (10-20-30 мл суммарно). Дозы атропина увеличивают в зависимости от степени интоксикации. Следят за проходимостью дыхательных путей и, если необходимо, проводят интубацию и искусственное дыхание.

Руководством к дополнительному введению атропина являются состояние дыхания, судорожная реакция, АД, частота пульса, саливация (слюнотечение). Описано в литературе введение атропина в дозе нескольких сот миллиграммов в сутки.

При этом частота пульса не должна превышать 120 ударов в 1 минуту.Вводят до появления сухости во рту и расширения зрачка.

Кроме того, при отравлениях ФОС необходимо применение специфических противоядий — реактиваторов ацетилхолинэстеразы.

К последним относят ряд соединений, содержащих в молекуле ОКСИМНУЮ группу (-NOH): дипироксим — четвертичный амин, а также изонитрозин — третичный амин; (aмпp., 15% — 1 мл). Реакция идет по схеме: АХЭ — Р = NOH. Дипироксим взаимодействует с остатками ФОС, связанными с ацетилхолинэстеразой, высвобождая фермент. Атом фосфора в АХЭ соеднинениях прочно связан, но связь Р = NOH, т. е. фосфора с оксимной группой, еще более прочная. Таким путем фермент высвобождается и восстанавливает свою физиологическую активность.

Но действие реактиваторов холинэстеразы развивается недостаточно быстро, поэтому наиболее целесообразно применение реактиваторов АХЭ вкупе с М-холиноблокаторами. Дипироксин назначают парентерально (по 1-3 мл п/к и только в особо тяжелых случаях в/в).

1 2 3 4 5 6 7 8 9 …

Фосфорорганические отравляющие вещества (ФОВ)

В арсенале химического оружия капиталистических стран имеются яды, относящиеся к наиболее токсичным веществам из известных человечеству. Это отравляющие вещества (ОВ) из группы фосфорорганических соединений. Кроме них, следует назвать ОВ кожно-нарывного действия, ОВ общеядовитого действия, ОВ удушающего действия, раздражающие и слезоточивые ОВ, а также психотомиметики.

Последние три группы ядов не относятся к веществам смертельного действия, однако способны в очень низких концентрациях и дозах вызывать выраженные нарушения со стороны целого ряда физиологических систем и органов, что полностью выводит человека из строя.

Все высокотоксичные фосфорорганические вещества являются производными кислот пятивалентного фосфора.

Наиболее известные яды этого типа - ДФФ (диизо-пропилфторфосфат), табун, зарин, зоман, Y-газы.

Типичным представителем Y-газов (фосфорорганические вещества типа Y) является вещество Yx (Lohs, 1975).

Указанные яды представляют собой жидкости. Они хорошо растворимы в органических растворителях и легко впитываются в окрашенные и пористые поверхности, а также в резинотехнические изделия.

Зарин достаточно летуч: при 20° С его максимальная концентрация паров в воздухе составляет 12 мг/л.

Зоман менее летуч: максимальная концентрация его паров при 20° С составляет 3 мг/л. Плотность паров зарина и зомана по воздуху соответственно равны 4,8 и 6,3. Вещества типа Y малолетучи.

ФОВ могут поражать незащищенного человека при любом способе контакта с ним. Они легко проникают в организм через легкие, слизистые оболочки глаз и органов пищеварения а также через кожные покровы.

«Неотложная помощь при острых отравлениях», С.Н.Голиков

Эту группу ядов подразделяют на ОВ, избирательно поражающие верхние дыхательные пути (стерниты) - дифенилхлорарсин, дифенилцианарсин, адамсит.

Слезоточивые ОВ (лакриматоры) - хлорацетофенон, бромбензилцианид, хлорпикрин (в низких концентрациях). ОВ смешанного действия - вещество CS.

Ниже приводится краткая характеристика этих соединений. Дифенилхлорарсин - кристаллическое вещество, температура кипения 333° С, температура плавления 38-40° С. Максимальная концентрация при температуре 20°С…

Вещества психогенного действия, галлюциногены. К психотомиметикам относят вещества, способные в сравнительно малых дозах расстраивать психическую деятельность человека. По своей химической природе психотомиметики принадлежат в основном к следующим группам: производные индола: производные лизергиновой кислоты - диэти- ламид, этиламид, морфолид; производные триптамина - N, N-диметилтриптамин, буфотенин, псилоцин и псилоцибии; разные - гармин, гармалин, ибогамин и др.

производные…

По токсичности ФОВ превосходят почти все известные яды, за исключением ботулотоксина и немногих токсинов природного происхождения.

Токсичность нарастает в ряду соединений ДФФ, табун, зарин, зоман, вещество Yx во много раз. Смертельная доза зарина для человека при внутримышечном введении 0,03 мг/кг. Капля зарина массой 3 мг при попадании в глаз представляет смертельную опасность.

Отравление ФОС

Концентрация зарина в…

Психотомиметики могут использоваться как ОВ на поле боя, так и в качестве диверсионных ядов (Franke, 1973). Они могут проникать в организм человека ингаляционным путем или же эптерально с зараженной пищей и водой. По механизму токсического действия производные лизергиновой кислоты отличаются от производных бензиловой и гликолевой кислот (антихолинергических веществ). У последних в основе психогенного действия лежит…

Острая интоксикация ФОВ проявляется разнообразными симптомами, которые в зависимости от их происхождения удобно делить на три группы: симптомы возбуждения мускариночувствительных холинореактивных систем, симптомы возбуждения никотиночувствительных холинореактивных систем, симптомы поражения центральной нервной системы.

К первой группе относятся следующие симптомы: слезотечение, слюнотечение, рино- и бронхорея, повышенное потоотделение, миоз, бронхоспазм и ларингоспазм, спастические сокращения кишечника, брадикардия, гипотония, тошнота,…

К фосфорорганическим соединениям (ФОС) относятся карбофос, хлорофос, тиофос, метафос и др. ФОС плохо растворимы в воде и хо­рошо растворимы в жирах.

Поступают в организм преимущественно ингаляционным путем, а также через кожные покровы и перорально. Распределяются в организме главным образом в липоидосодержащих тканях, включая нервную систе­му. Выделяются ФОС почками и через ЖКТ.

Механизм токсического действия ФОС связан с угнетением фермен­та холинэстеразы, разрушающей ацетилхолин, что приводит к накоплению ацетилхолина, избыточному возбуждению М- и Н-холинорецепторов.

Клиническая картина описывается холиномиметическими эффекта­ми: тошнотой, рвотой, спастическими болями в животе, слюнотечением, слабостью, головокружением, явлениями бронхоспазма, брадикардией, сужением зрачков. В тяжелых случаях возможны судороги, непроизволь­ное мочеиспускание и дефекация.

Ртутьорганические соединения.

К ним относятся такие вещества как гранозан, меркуран и др.

Вещества этой группы поступают в организм Выделяются почками и через ЖКТ. Ртутьорганические соединения обладают выраженной липоидотропностью и в связи с этим склонны к кумуляции, прежде всего в ЦНС.

В механизме действия основную роль играет способность к угнете­нию ферментов, содержащих сульфгидрильные группы (тиоловых фер­ментов). В результате нарушается белковый, жировой, углеводный обмен в тканях различных систем и органов.

При отравлении ртутьорганическими соединениями больные жалу­ются на головную боль, головокружение, быструю утомляемость, метал­лический вкус во рту, повышенную жажду, боли в области сердца, тремор и др. Кроме того наблюдается кровоточивость и разрыхленность десен. В тяжелых случаях поражаются внутренние органы (гепатит, миокардит, нефропатия).

Хлорорганические соединения.

К веществам данной группы относятся ДДТ, гексахлорциклогексан (ГХЦГ), гексахлоран, алдрин и др. Большинство является твердыми ве­ществами, хорошо растворимыми в жирах.

В организм хлорорганические вещества поступают ингаляционным путем, через кожные покровы и перорально. Выделяются почками и через ЖКТ. Вещества обладают выраженными кумулятивными свойства­ми и накапливаются в паренхиматозных органах, липоидосодержащих тканях.

Хлорорганические соединения обладают липоидотропностью, спо­собны проникать внутрь клеток и блокировать функцию дыхательных ферментов, в результате чего нарушаются процессы окисления и фосфо-рилирования во внутренних органах и нервной ткани.

При острых отравлениях в легких случаях наблюдается слабость, головная боль, тошнота. В тяжелых случаях имеет место поражение нервной системы (энцефалополиневрит), печени (гепатит), почек (нефропатия), органов дыхания (бронхит, пневмония), наблюдается по­вышение температуры тела.

Для хронического отравления характерны функциональные наруше­ния нервной деятельности (астеновегетативный синдром), изменение функции печени, почек, сердечно-сосудистой системы, эндокринной сис­темы, ЖКТ. При попадании на кожу хлорорганические соединения вызы­вают профессиональные дерматиты.

Профилактика.

1. Технологические мероприятия - механизация и автоматизация работы с ядохимикатами. Запрещено опрыскивание растений ядохимикатами ручным способом.

2. Строгое соблюдение правил хранения, транспортировки и применения ядохимикатов.

3. Санитарно-техничесше меры. Крупные склады хранения ядохимика­тов должны располагаться не ближе 200 метров от жилых зданий и скотных дворов. Их оборудуют приточно-вытяжной вентиляцией.

4. Применение средств индивидуальной защиты. Работающих с химика­тами снабжают спецодеждой, защитными приспособлениями (противогаз, респиратор, очки). После работы обязательно принимают душ.

5. Гигиеническое нормирование. Концентрация ядохимикатов в склад­ских помещениях и при работе с ними не должна превышать ПДК.

6. Длительность рабочего дня устанавливаю в пределах 4-6 часов в зависимости от степени токсичности ядохимикатов. В жаркое время года работы следует производить в утренние и вечерние часы. Запре­щена обработка посевных площадей в ветреную погоду.

7. Ознакомление рабочих с токсическими свойствами химикатов и спо­собами безопасной работы с ними.

8. Лечебно-профилактические мероприятия. Предварительные и перио­дические медицинские осмотры. Нельзя работать с химикатами под­росткам, беременным и кормящим женщинам, а также лицам с повы­шенной чувствительностью к ядохимикатам.

96. Поведение пестицидов в природной среде. Сравнительная гигиеническая характеристика фосфорорганических и хлорорганических пестицидов. Профилактика возможных отравлений.

Пестициды являются важным фактором продуктивности растениеводства, но в то же время могут оказывать на окружающую среду различные побочные влияния: возможное загрязнение остатками препаратов растений, почвы, воды, воздуха; накопление и передача по цепям питания стойких пестицидов; нарушение нормальной жизнедеятельности отдельных видов живых организмов; развитие устойчивых популяций вредителей и др. Для предупреждения нежелательного влияния пестицидов на природу проводится систематическое изучение поведения пестицидов и метаболитов в различных объектах окружающей среды. На основании этих данных разрабатываются рекомендации по безопасному использованию препаратов. В атмосферный воздух пестициды попадают непосредственно при их применении любыми способами с помощью наземной или авиационной аппаратуры. Наибольшие количества пестицидов попадают в воздух при опыливании, применении аэрозолей, авиационном опрыскивании, особенно в условиях высоких температур. Воздушными течениями аэрозоли и пылевидные частицы разносятся на значительные расстояния. Поэтому в нашей стране ограничено применение пестицидов способом опыливания. Применение авиаопрыскивания, мелкокапельного ультрамалообъемного опрыскивания рекомендуется проводить при более низких температурах в утреннее и вечернее время, аэрозолей - в ночное время. Химические соединения, попадающие в атмосферу, не остаются там постоянно. Часть из них попадает в почву, другая часть подвергается фотохимическому разложению и гидролизу с образованием простейших нетоксичных веществ. Большинство пестицидов в атмосфере разрушается относительно быстро, но стойкие соединения типа ДДТ, арсенатов, ртутных препаратов разрушаются медленно и способны накапливаться, особенно в почве.
Почва - важный компонент биосферы. В ней сконцентрировано огромное количество различных живых организмов, продуктов их жизнедеятельности и отмирания. Почва является универсальным биологическим адсорбентом и нейтрализатором разнообразных органических соединений. Пестициды, попавшие в почву, могут вызывать гибель почвообитающих вредных насекомых (личинок щелкунов, чернотелок, жужелиц, хрущей, совок и др.), нематод, возбудителей болезней, проростков сорняков. Вместе с тем они могут оказывать отрицательное действие и на полезные компоненты почвенной фауны, которые способствуют улучшению структуры и свойств почвы. Менее опасными для почвенной фауны являются нестойкие, быстро разлагающиеся пестициды. Продолжительность сохранения пестицидов в почве зависит от их свойств, нормы расхода, формы препарата, типа, влажности, температуры и физических свойств почвы, состава почвенной микрофлоры, особенностей обработки почвы и т. д. Установлено, что хлорорганические пестициды в почве сохраняются дольше, чем фосфорорганические, хотя в пределах каждой из этих групп продолжительность сохранения инсектицидов может быть различной. Большое влияние на персистентность химических соединений в почве оказывают различные почвенные микроорганизмы, для которых пестициды нередко являются источником углерода. Чем выше температура почвы, тем быстрее происходит разложение препаратов, как под влиянием химических факторов (гидролиз, окисление), так и под влиянием микроорганизмов и других обитателей почвы. По скорости разложения в почве пестициды условно делят на: очень стойкие (более 18 месяцев), стойкие (до 12 месяцев), умеренно стойкие (более 3 месяцев), малостойкие (менее 1 месяца).
Применение в сельском хозяйстве очень стойких пестицидов (ДДТ, гептахлор, полихлорпинен, соединения мышьяка и др.) не разрешается. Применение менее персистентных препаратов (ГХЦГ, севин, тиодан) строго регламентировано.
Очень большое значение придается водоохранным мерам, предупреждающим загрязнение морей, рек, озер, внутренних водоемов, почвенных и грунтовых вод вредными остатками пестицидов. В открытые водоемы пестициды попадают при авиационной и наземной обработке сельскохозяйственных угодий и лесов, с почвенными и дождевыми водами, при непосредственной обработке против переносчиков заболеваний человека и животных.
При правильном применении пестицидов в сельском хозяйстве в водоемы поступает их минимальное количество. Возможно накопление только очень стойких пестицидов (ДДТ) в отдельных видах водных организмов. Их концентрация происходит не только в фитопланктоне и беспозвоночных организмах, но и в некоторых видах рыб. В зависимости от вида организма степень концентрации стойких пестицидов можех меняться в довольно широких пределах. Наряду с накоплением происходит и постепенное разложение пестицидов фитопланктоном. Различные пестициды разлагаются фито- и зоопланктоном с разной скоростью. По скорости разрушения в водной среде пестициды условно делят на следующие пять групп: с продолжительностью сохранения биологической активности свыше 24 месяцев, до 24 месяцев, 12 месяцев, 6 месяцев и 3 месяца. Почти все применяемые в сельском хозяйстве препараты в водном растворе довольно легко гидролизуются с образованием малотоксичных продуктов, причем скорость гидролиза выше при более высокой температуре воды. Особенно быстро гидролизуются фосфорорганические препараты.
Наиболее опасно загрязнение водоемов стойкими и высокотоксичными для рыб хлорорганическими инсектицидами



Понравилась статья? Поделиться с друзьями: