Где происходит газообмен в организме. Легкие – как они работают? Расположение легкого в грудной клетке

Газообмен — совокупность процессов обмена газов между организмом и окружающей средой; состоит в потреблении кислорода и выделении углекислого газа с незначительными количествами газообразных продуктов и паров воды. Интенсивность Г. пропорциональна интенсивности окислительно-восстановительных процессов, происходящих во всех органах и тканях, и находится под регулирующим влиянием нервной и эндокринной систем. Газообмен обеспечивается функциями нескольких систем организма. Наибольшее значение имеют внешнее, или легочное, дыхание, обеспечивающее направленную диффузию газов через альвеолокапиллярные перегородки в легких и обмен газов между наружным воздухом и кровью; дыхательная функция крови, зависимая от способности плазмы растворять и способности гемоглобина обратимо связывать кислород и углекислый газ; транспортная функция сердечно-сосудистой системы (кровотока), обеспечивающая перенос газов крови от легких к тканям и обратно; функция ферментных систем, обеспечивающая обмен газов между кровью и клетками тканей, т.е. тканевое дыхание (см. ).

Диффузия газов крови (переход газов из альвеол в кровь, из крови — в клетки тканей и обратно) осуществляется через мембрану клеток по концентрационному градиенту — из мест с более высокой концентрацией в области более низкой концентрации. За счет этого процесса в альвеолах легких в конце вдоха происходит выравнивание парциальных давлений различных газов в альвеолярном воздухе и крови. Обмен с атмосферным воздухом в процессе последующих выдоха и вдоха (вентиляция альвеол) вновь приводит к различиям концентрации газов в альвеолярном воздухе и в крови, в связи с чем происходит диффузия кислорода в кровь, а углекислого газа из крови. Диффузия газов через альвеолокапиллярную перегородку начинается с диффузии через тонкий слой жидкости на поверхности альвеолярного эпителия, в котором скорость диффузии (т.е. количество газа, проходящего через мембрану в единицу времени) ниже, чем в воздухе, т.к. коэффициент диффузии обратно пропорционален вязкости среды и зависит также от растворимости (абсорбции) газов в данной жидкости. При одинаковом сопротивлении диффузии скорость диффузии (V) прямо пропорциональна разнице парциального давления газа по обе стороны мембраны (Dр). Для характеристики сопротивления диффузии газов в легких принято использовать обратную ему величину — коэффициент, или фактор, проницаемости, обозначаемый на практике как диффузионная способность легких (ДЛ).

Эта величина равна количеству газа, проходящего через легочную мембрану в 1 мин при разнице парциального давления по обе стороны мембраны в 1 мм рт. ст. У здорового взрослого человека в покое величина Dр составляет около 10 мм рт. ст., а поглощение кислорода равно примерно 300 мл/мин, из чего следует, что диффузионная способность легких для кислорода в норме составляет около 30 мл/мин/мм рт. ст. Дыхательная функция крови определяется количеством связанных с гемоглобином и растворенных в плазме О 2 и СО 2 , а также условиями, обеспечивающими диссоциацию молекул HbO 2 и HbCO 2 необходимую для Г. между тканями и легкими. Кроме О 2 и СО 2 в крови в небольших количествах растворены азот, аргон, гелий и др.

Содержание газов в жидкости в физически растворенном виде зависит от его напряжения и от коэффициента растворимости (закон Генри — Дальтона), соответствующего объему газа (в мл), физически растворяющегося в 1 мл жидкости при напряжении газа, равном 1 атм, или 760 мм рт. ст. Для цельной крови при t° 37° коэффициент растворимости (a) кислорода равен 0,024, углекислоты — 0,49, азота — 0,012. Чем выше напряжение газа, тем больше, при прочих равных условиях, его объем, растворяемый в жидкости, в т.ч. в крови. При парциальном давлении кислорода в альвеолярном воздухе, равном 95 мм рт. ст., в 100 мл артериальной крови растворено около 0,30 мл О 2 в смешанной венозной крови при снижении напряжения кислорода до 40 мм рт. ст. в 100 мл крови на долю физически растворенного кислорода приходится около 0,11 мл. Количество растворенного СО 2 в 100 мл артериальной и венозной крови соответственно составляет 2,6 и 2,9 мл. Большая часть О 2 и СО 2 переносится в форме связи их с гемоглобином в виде молекул HbO 2 и HbCO 2 .

Максимальное количество кислорода, связываемое кровью при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. В норме ее величина колеблется в пределах 16,0—24,0 об% и зависит от содержания в крови гемоглобина, 1 г которого может связать 1,34 мл кислорода (число Хюфнера). В клинике определяют степень насыщения артериальной крови кислородом, представляющую собой выраженное в % отношение содержания кислорода в крови к ее кислородной емкости. Связывание кислорода гемоглобином является обратимым процессом, зависимым от напряжения кислорода в крови (при понижении напряжения кислорода оксигемоглобин отдает кислород), что отражается так называемой кислородно-диссоциационной кривой гемоглобина, а также от других факторов, в частности от рН крови.

Как правило, все эти факторы смещают кривую диссоциации оксигемоглобина, увеличивая или уменьшая ее наклон, но не изменяя при этом ее S-образную форму. СО 2 , образующийся в тканях, переходит в кровь кровеносных капилляров, затем диффундирует внутрь эритроцита, где под влиянием карбоангидразы превращается в угольную кислоту, которая тут же диссоциирует на ионы водорода и. Последние частично диффундируют в плазму крови, образуя бикарбонат натрия, который при поступлении крови в легкие, как и ионы, содержащиеся в эритроцитах (в т.ч. в составе бикарбоната калия), диссоциируют с образованием СО 2 , подвергающегося диффузии в альвеолы. Около 80% всего количества СО 2 переносится от тканей к легким в виде бикарбонатов, 10% — в виде свободно растворенной углекислоты и 10% — в виде карбоксигемоглобина. Карбоксигемоглобин диссоциирует в легочных капиллярах на гемоглобин и свободный СО 2 , который удаляется с выдыхаемым воздухом. Освобождению СО 2 из связи с гемоглобином способствует превращение последнего в оксигемоглобин, который, обладая выраженными кислотными свойствами, способен переводить бикарбонаты в угольную кислоту, диссоциирующую с образованием молекул воды и СО 2 .

Патология газообмена выражается в возрастании или снижении интенсивности Г. Общее возрастание интенсивности Г. как отражение повышенного потребления кислорода наблюдается при лихорадке, тиреотоксикозе, инфекционных интоксикациях (например, при туберкулезе), повышении обмена веществ в связи с заболеваниями ц.н.с. (в т.ч. при неврозах), надпочечников, половых желез, при передозировке адреномиметических средств. Снижение интенсивности Г. с уменьшением потребления кислорода наблюдается в процессе искусственной гипотермии, при микседеме, алиментарной дистрофии. Собственно патология Г. характеризуется неадекватностью обеспечения кислородом тканей по отношению к их потребностям в данный момент и (или) должного напряжения углекислого газа (рСО 2) в крови, участвующего в регуляции кислотно-щелочного равновесия, а также функций дыхания и кровообращения.

Патологическое повышение рСО 2 — гиперкапния (газовый ацидоз) — обычно сочетается со снижением напряжения кислорода (рО 2) в плазме крови и его содержания в эритроцитах, т.е. гипоксемией, приводящей к гипоксии тканей. Патологическое снижение рСО 2 — гипокапния (газовый алкалоз) — возможно и при нормальной оксигенации крови, как это имеет место в случае гипервентиляции альвеол легких при учащении дыхания (в т.ч. при произвольном). Гипервентиляция практически не увеличивает переход кислорода из альвеол в кровь, но способствует избыточному выведению углекислого газа. От концентрации СО 2 в крови зависят степень дилатации мозговых артерий и тонус периферических вен, поэтому гипокапния сопровождается снижением венозного возврата крови к сердцу, величины сердечного выброса и АД; одновременно диффузно уменьшается мозговой кровоток, что проявляется головокружением, парестезиями, затемнением сознания вплоть до обморока (так называемый, синдром гипервентиляции).

Причинами нарушения Г. между организмом и окружающей средой могут быть изменения состава или парциального давления газов во вдыхаемом воздухе; патология системы внешнего дыхания и его регуляции; нарушения транспортно-распределительной функции крови и кровообращения; нарушения окислительно-восстановительных процессов в тканях (угнетение клеточного дыхания). Патология Г. вследствие изменений состава и давления вдыхаемого воздуха наблюдается в разряженной атмосфере, при неправильном пользовании искусственными дыхательными смесями, дыхании в замкнутых системах без достаточной стабилизации количества обменивающегося газа и т.п. В разреженной атмосфере (например, при подъеме на высоту более 3000 м), где рО 2 в воздухе значительно снижено, наблюдается его снижение и в альвеолярном воздухе, в связи с чем уменьшается насыщение крови кислородом в легочных капиллярах (см. , ).

Снижение рО 2 в артериальной крови стимулирует работу дыхательного центра, приводя к увеличению минутного объема дыхания и выведения углекислого газа. Развивающийся газовый алкалоз угнетает процессы отдачи гемоглобином кислорода, что усугубляет гипоксию тканей, обусловленную гипоксемией. Нарушения Г. при патологии внешнего дыхания могут быть обусловлены снижением проницаемости альвеолярно-капиллярных мембран для газов (диффузионная недостаточность), недостаточным обменом воздуха в альвеолах при их сниженной или неравномерной вентиляции (вентиляционная недостаточность), а также нарушением вентиляционно-перфузионных отношений. Диффузионная дыхательная недостаточность из-за значительных различий в диффузии О 2 и СО 2 через альвеолярно-капиллярные мембраны приводит к выраженной гипоксемии, стимулирующей вентиляцию и сочетающуюся поэтому с гипокапнией.

Степень гипоксемии в этих случаях весьма значительна и клинически может выражаться диффузным цианозом, резко нарастающим даже при малой физической нагрузке. Такое нарушение Г. характерно для диффузных легочных фиброзов и гранулематозов различной этиологии, например при бериллиозе, саркоидозе, синдроме Хаммена — Рича (см. Альвеолиты), наблюдается иногда при раковом лимфангиите легких. При гиповентиляции легочных альвеол рО 2 в альвеолярном воздухе падает, рСО 2 возрастает; при этом градиент парциального давления, необходимый для диффузии газов через альвеолокапиллярную мембрану, создается за счет снижения рО 2 и повышения рСО 2 плазмы крови. Поэтому выраженная гиповентиляция альвеол приводит не только к гипоксемии, но и к гиперкапнии с развитием газового ацидоза. Ведущее место среди причин альвеолярной гиповентиляции занимают нарушения бронхиальной проходимости и изменение функциональных легочных объемов, прежде всего объема остаточного воздуха (см. ). Они определяют вентиляционную недостаточность, сопровождающую такие распространенные заболевания, как бронхиальная астма, бронхиолит (см. ), бронхит, пневмосклероз, эмфизема легких.

Причиной альвеолярной гиповентиляции могут быть также Пиквикский синдром, нарушение деятельности дыхательного центра при органических поражениях ц.н.с., отравлениях барбитуратами, препаратами опия, а также поражения двигательных нервов дыхательных мышц, диафрагмы, плевры. Неравномерная вентиляция возникает при гиповентиляции только отдельных участков легких, когда повышение минутного объема дыхания, не устраняя гипоксемии, приводит к гипервентиляции других участков с избыточным выведением СО 2 . В результате неравномерность вентиляции может проявляться таким же сочетанием гипоксемии с гипокапнией, как и при диффузной недостаточности. В отличие от последней у больных с неравномерностью альвеолярной вентиляции физическая нагрузка не увеличивает степень цианоза, а в ряде случаев цианоз даже уменьшается из-за улучшения вентиляции в зонах, где она была уменьшена (за счет форсирования дыхания при нагрузке, устранения локального бронхоспазма и др.).

В развитии всех типов патологии Г. в легких лежит нарушение вентиляционно-перфузионных отношений, но в ряде случаев оно имеет первостепенное значение В норме отношение минутного объема альвеолярной вентиляции, составляющего в среднем в состоянии покоя 4— 5 л к минутному объему перфузии легких (примерно 5—6 л), находится в пределах 0,8—1. При вентиляционной недостаточности с гипоксемией этот показатель меньше 0,8, что обусловлено сохранением перфузии в зонах гиповентиляции легких, а иногда связано с их гиперфузией, как, например, в фазе гиперемии («прилива») развивающейся острой пневмонии. При этом формируется как бы веноартериальный шунт: кровь, прошедшая через невентилируемый участок легкого, остается венозной и в таком виде переходит в артериальную систему большого круга кровообращения. Именно этим объясняется цианоз больных в первые дни развития крупозной пневмонии.

Отношение вентиляции к кровотоку в легких становится больше 1, если перфузия уменьшена в зонах, где вентиляция сохранена или даже усилена (при тромбозе или эмболии ветвей легочной артерии, легочном васкулите, ангиосклерозе). Преобладание вентиляции над кровотоком может вызывать гипервентиляцию, сочетающуюся с гипокапнией. Содержание СО 2 в крови влияет на связь гемоглобина с О 2 и тем самым на обмен О 2 в тканях и в легких. При гипокапнии затрудняется диссоциация оксигемоглобина; при гиперкапнии, обычно сочетающейся с гипоксемией, диссоциация оксигемоглобина облегчается, но затрудняется оксигенация крови в легких.

Патология Г. в связи с нарушением транспорта газов между легкими и клетками организма наблюдается при уменьшении газовой емкости крови вследствие недостатка или качественных изменений гемоглобина, а также при снижении объемной скорости кровотока в тканях. При анемиях кислородная емкость крови уменьшается пропорционально снижению концентрации гемоглобина. Уменьшение поступления кислорода в ткани из единицы объема крови может лишь частично компенсироваться повышением скорости кровотока, поскольку последняя не должна превышать скорость Г. между тканями и контактирующей с ними кровью. Снижение концентрации гемоглобина при анемиях ограничивает и транспорт углекислоты от тканей к легким в форме карбоксигемоглобина.

Нарушение транспорта кислорода кровью возникает также при поврежденной патологии гемоглобина, например при серповидно-клеточной анемии (см. ), при инактивации части молекул гемоглобина за счет превращения его в метгемоглобин, например при отравлении нитратами (см. ), или в карбоксигемоглобин — при вдыхании окиси углерода. Связь гемоглобина с окисью углерода более прочная, чем с кислородом. Кроме того, наличие в крови карбоксигемоглобина ухудшает диссоциацию оксигемоглобина. Поэтому инактивация 50% гемоглобина за счет превращения его в карбоксигемоглобин сопровождается гораздо более тяжелым нарушением Г., чем, например, потеря даже этих же 50% гемоглобина при кровотечении. Нарушения Г. вследствие уменьшения объемной скорости кровотоки в капиллярах возникают при сердечной недостаточности (особенно застойной), сосудистой недостаточности (в т.ч. при коллапсе, шоке), локальные нарушения — при ангиоспазме и других причинах ишемии ткани, а также при местном венозном стазе, патологическом открытии артериоловенулярных анастомозов. В условиях застоя крови концентрация восстановленного гемоглобина возрастает.

При сердечной недостаточности этот феномен особенно выражен в капиллярах отдаленных от сердца участков тела, где кровоток наиболее замедлен, что клинически проявляется акроцианозом. Первичное нарушение Г. на уровне клеток наблюдается главным образом при воздействии ядов, блокирующих дыхательные ферменты. В результате клетки утрачивают способность утилизировать кислород (артериовенозная разница по кислороду при этом отпадает, т.к. венозная кровь богата кислородом) и развивается резкая тканевая гипоксия, приводящая к структурной дезорганизации субклеточных и клеточных элементов, вплоть до некроза. Нарушению клеточного дыхания может способствовать витаминная недостаточность, например дефицит витаминов В 2 , РР, являющихся коферментами дыхательных ферментов.

Коррекция нарушений Г. — одна из важнейших, иногда неотложных задач лечения больных с патологией систем внешнего дыхания или транспорта газов в организме. При гипоксемии она состоит в кислородной терапии, которая, однако, может быть небезопасной из-за угрозы апноэ у больных с выраженной гиперкапнией или при наличии других причин снижения реактивности дыхательного центра на углекислоту. Гиперкапния и выраженная гипоксемия при аритмии дыхания являются показаниями к применению искусственной вентиляции легких (ИВЛ). При гипокапнии необходимо устранить или уменьшить гипервентиляцию. С этой же целью применяют промедол или морфин (особенно при тахипноэ), коррекцию режима вентиляции у больных, находящихся на ИВЛ. При патологии Г. только за счет расстройств легочного кровообращения или нарушения транспорта газов обычная кислородная терапия существенно не улучшает оксигенацию тканей. При отдельных видах таких нарушений эффективна оксигенобаротерапия (см. ), при выраженной анемии — переливание эритромассы. С целью повышения эффективности тканевого дыхания парентерально вводят кокарбоксилазу, рибофлавин-мононуклеотид (или флавинат), цитохром с. Необходима коррекция выявляемых нарушений кислотно-щелочного равновесия (см. Алкалоз, Ацидоз).

Измерение напряжения и содержания газов в крови и тканях. Напряжение кислорода чаще всего измеряют полярографически. Для анализа напряжения О 2 в артериализированной капиллярной крови несколько капель ее берут из растертой (разогретой) мочки уха. Возможно измерение напряжения О 2 непосредственно а отдельных клетках при помощи микроэлекгродов. Для измерения напряжения СО 2 в небольших количествах артериальной крови используют электрометрический метод (применяют такой же электрод, как и для измерения рН) или метод Аструпа. При оценке степени нарушений Г. учитывают изменения кислотно-щелочного равновесия. Если требуется измерить не напряжение, а содержание газов в крови, используют методы, при которых сначала полностью извлекают газы из крови, а затем измеряют их давление или объем. Чаще всего для этого используют манометрический аппарат Ван-Слайка. Объемную скорость потребления кислорода и выделения углекислоты измеряют с помощью объемных приборов закрытого типа, действующих по принципу определения дефицита газа в герметической системе «обследуемый — прибор».

Различают приборы, в которых для дыхания используют чистый кислород, и приборы с кислородно-воздушной смесью. Приборы с кислородно-воздушным режимом дыхания имеют возможность параллельного подключения дополнительной емкости и кислородную стабилизацию, когда кислород добавляется в систему в соответствии с его потреблением. Это различные спирографы и спирометры для взрослых и детей. Газовый анализ осуществляется различными газоанализаторами вдыхаемого и выдыхаемого воздуха объемного и скоростного типа, хроматографами, масс-спектрографами, полярографами, приборами с ионоселективными электродами и др. Для определения насыщения крови кислородом используются оксигемографы. Определение кислотно-основного равновесия проводят с помощью приборов для микроанализа газов крови. При необходимости исследовать причины нарушений газообмена у больных с патологией системы внешнего дыхания определяют диффузионную проницаемость альвеолокапиллярных мембран с помощью масс-спектрометрии и специальных диффузиометров на основе газового анализа, изучают нарушения структуры функциональных легочных объемов и бронхиальной проходимости с помощью спирометрии, спирографии (см. ), пневмотахометрии с использованием функциональных тестов.

Степень неравномерности альвеолярной вентиляции определяется по удлинению времени разведения азота, гелия или других индикаторных газов в общем объеме легких. О нарушении вентиляционно-перфузионных отношений в легких косвенно можно судить по изменениям функционального мертвого пространства и его отношения к дыхательному объему. В процессе эксплуатации приборов для исследования газообмена необходимо следить за чистотой присоединительных элементов (дыхательных трубок, мешков, загубников и т.п.). Последние имеют специальные насадки одноразового использования.

Библиогр.: Руководство по клинической физиологии дыхания, под ред. Л.Л. Шика и Н.Н. Канаева, Л., 1980; Физиология человека, под ред. Р. Шмидта и Г. Тевса, пер. с англ.; с. 216, М., 1986.

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Легкие являются наиболее объемным органом нашего организма. Структура и механизм работы легких достаточно интересны. Каждый вдох наполняет наш организм кислородом, выдох устраняет из организма углекислый газ и некоторые токсические вещества. Дышим мы постоянно – и во сне и во время бодрствования. Процесс вдоха и выдоха – это достаточно сложные действия, которые осуществляются несколькими системами и органами при одновременном взаимодействии.

Несколько удивительных фактов о легких

Знаете ли Вы, что в легких содержится 700 миллионов альвеол (мешотчатых окончаний в которых происходит газообмен )?
Интересен тот факт, что площадь внутренней поверхности альвеол изменяется более чем в 3 раза - при вдохе более 120 квадратных метров, против 40 метров квадратных при выдохе.
Площадь альвеол более чем в 50 раз превышает площадь кожных покровов.

Анатомия легкого

Условно легкое можно разделить на 3 отдела:
1. Воздухоносный отдел (бронхиальное дерево ) – по которому воздух, как по системе каналов достигает альвеол.
2. Отдел, в котором происходит газообмен – система альвеол.
3. Отдельного внимания заслуживает кровеносная система легкого.

Для боле подробного изучения строения легкого рассмотрим каждую из представленных систем отдельно.

Бронхиальное дерево – как воздухоносная система

Представлено ветвлениями бронхов, визуально напоминающих гофрированные трубки. По мере ветвления бронхиального дерева просвет бронхов сужается, но они становятся все более многочисленными. Конечные веточки бронхов, называемые бронхиолами, имеют просвет размером менее 1 миллиметра, но их численность составляет несколько тысяч.

Строение стенки бронхов

Стенка бронхов состоит из 3-х слоев:
1. Внутренний слой слизистый . Выстлан цилиндрическим мерцательным эпителием. Особенностью данного слизистого слоя является наличие на поверхности мерцательных щетинок, которые создают однонаправленное движение слизи на поверхности, способствуют механическому выведению пылинок или иных микроскопических частиц во внешнюю среду. Поверхность слизистой всегда увлажнена, содержит антитела и иммунные клетки.

2. Средняя оболочка мышечно-хрящевая . Данная оболочка выполняет роль механического каркаса. Хрящевые колечки создают вид гофрированного шланга. Хрящевая ткань бронхов препятствует спаданию просвета бронхов при перепадах давления воздуха в легких. Так же хрящевые колечки, связанные гибкой соединительной тканью обеспечивают мобильность и гибкость бронхиального дерева. По мере снижения калибра бронхов в средней оболочке начинает преобладать мышечный компонент. При помощи гладкой мышечной ткани у легких появляется возможность регулировать потоки воздуха, ограничивать распространение инфекции и инородных тел .

3. Наружная оболочка адвентиция . Эта оболочка обеспечивает механическую связь бронхиального дерева с окружающими органами и тканями. Состоит из коллагеновой соединительной ткани.

Ветвления бронхов весьма напоминают вид опрокинутого дерева. Отсюда и название – бронхиальное древо. Началом воздухоносных путей бронхиального древа, можно назвать просвет трахеи. Трахея в своей нижней части раздваивается на два главных бронха, которые направляют воздушные потоки каждый в свое легкое (правое и левое ). Внутри легкого ветвление продолжается на долевые бронхи (3 в левом легком и 2 в правом ), сегментарные и т.д. Воздухоносная система бронхиального дерева оканчивается терминальными бронхиолами, которые дают начало дыхательной части легкого (в ней происходит газообмен между кровью и воздухом легкого ).

Дыхательная часть легкого

Ветвление воздухоносной системы легкого достигает уровня бронхиол. Каждая бронхиола, диаметр которой не превышает 1 мм, дает начало 13 - 16 дыхательным бронхиолам, которые в свою очередь дают начало дыхательным ходам, оканчивающимися альвеолами (гроздевидные мешочки ), в которых происходит основной газообмен.

Строение легочной альвеолы

Легочная альвеола выглядит как гроздь винограда. Состоит из дыхательной бронхиолы, дыхательных ходов и воздушных мешочков. Выстлана внутренняя поверхность альвеол однослойным плоским эпителием тесно связанным с эндотелием капилляров, окутывающих альвеолу как сеть. Именно благодаря тому, что просвет альвеол отделен от просвета капилляра очень тонкой прослойкой, возможен активный газообмен, между легочной и кровеносной системами.

Внутренняя поверхность альвеол покрыта специальным органическим веществомсурфактантом .
Данное вещество содержит органические составляющие, препятствующие спаданию альвеол при выдохе, в нем находятся антитела, иммунные клетки, обеспечивающие защитные функции. Так же сурфактант препятствует проникновению в просвет альвеол крови.

Расположение легкого в грудной клетке

Легкое лишь в месте соединения с главными бронхами механически фиксировано к окружающим тканям. Остальная его поверхность не имеет механической связи с окружающими органами.


Как же тогда происходит расправление легкого при дыхании?

Дело в том, что легкое расположено в специальной полости грудной клетки называемой плевральной . Эта полость выстлана однослойной слизистой тканью – плеврой . Такая же ткань выстилает и саму внешнюю поверхность легкого. Данные листки слизистых соприкасаются между собой, сохраняя возможность скольжения. Благодаря секретируемой смазке, возможно при вдохе и выдохе скольжение наружной поверхности легкого по внутренней поверхности грудной клетки и диафрагмы.

Мышцы, участвующие в акте дыхания

На самом деле вдох и выдох достаточно сложный и многоуровневый процесс. Для его рассмотрения необходимо ознакомиться с опорно-мышечным аппаратом, участвующем в процессе внешнего дыхания.

Мышцы, участвующие во внешнем дыхании
Диафрагма – это плоская мышца, натянутая как батут по краю реберной дуги. Диафрагма отделяет грудную полость от брюшной. Основная функция диафрагмы – активное дыхание.
Межреберные мышцы – представлены несколькими слоями мышц, посредством которых верхние и нижние края соседних ребер соединяются. Как правило, данные мышцы участвуют в глубоком вдохе и затяжном выдохе.

Механика дыхания

При вдохе происходит ряд одновременных движений, которые приводят к активному нагнетанию воздуха в воздухоносные пути.
При сокращении диафрагмы она уплощается. В плевральной полости создается отрицательное давление благодаря вакууму. Отрицательное давление в плевральной полости передается тканям легкого, которое послушно расширяется, создавая отрицательное давление в дыхательных и воздухоносных отделах. В результате атмосферный воздух устремляется в область пониженного давления – в легкие. Пройдя воздухоносные пути, свежий воздух смешивается с остаточной порцией воздуха легкого (воздух, оставшийся в просвете альвеол и дыхательных путей после выдоха ). В результате чего, концентрация кислорода в воздухе альвеол повышается, а концентрация углекислого газа понижается.

При глубоком вдохе происходит расслабление определенной части косых межреберных мышц и сокращении перпендикулярно расположенной порции мышц, что увеличивает межреберные расстояния, повышая объем грудной клетки. Потому появляется возможность на 20 - 30% увеличить объем вдыхаемого воздуха.

Выдох – в основном это пассивный процесс. Спокойный выдох не требует напряжения каких-либо мышц – требуется лишь расслабление диафрагмы. Легкое, благодаря своей эластичности и упругости само вытесняет основную часть воздуха. Лишь при форсированном выдохе могут напрягаться мышцы живота, межреберные мышцы. К примеру – при чихании или при кашле происходит сокращение мышц брюшного пресса, повышается внутрибрюшное давление, которое через диафрагму передается легочной ткани. Определенная часть межреберных мышц при сокращении приводит к уменьшению межреберных промежутков, что уменьшает объем грудной клетки, приводя к усиленному выдоху.

Кровеносная система легкого

Сосуды легкого берут свое начало от правого желудочка сердца , из которого кровь поступает в легочный ствол. По нему кровь распределяется в правую и левую легочные артерии соответствующих легких. В тканях легкого происходят ветвления сосудов параллельно бронхам. Причем артерии и вены идут параллельно бронху в непосредственной близости. На уровне дыхательной части легкого происходит ветвление артериол на капилляры, которые окутывают альвеолы густой сосудистой сетью. В этой сети и происходит активный газообмен. В результате прохождения крови на уровне дыхательной части легкого происходит обогащение эритроцитов кислородом. Покидая альвеолярные структуры, кровь продолжает свое движение, но уже по направлению к сердцу – к его левым отделам.

Как происходит газообмен в легких?

Поступившая при вдохе порция воздуха изменяет газовый состав полости альвеол. Повышается уровень кислорода, понижается уровень углекислого газа.
Альвеолы окутаны достаточно густой сетью мельчайших сосудов – капилляров, которые, пропуская с медленной скоростью через себя эритроциты, способствуют активному газообмену. Нагруженные гемоглобином эритроциты, проходя через капиллярную сеть альвеол, присоединяют к гемоглобину кислород.

Попутно происходит выведение из состава крови углекислого газа – он покидает кровь и переходит в полость воздухоносных путей. Узнать подробнее о том, как на молекулярном уровне происходит процесс газообмена в эритроцитах, Вы можете в статье: «Эритроциты – как они работают? ».
Посредством легких при дыхании происходит непрерывный газообмен между атмосферным воздухом и кровью. Задача легких обеспечить организм, необходимым количеством кислорода, попутно выводя образующийся в тканях организма и транспортируемый к легким кровью углекислый газ.

Как управляется процесс дыхания?

Дыхание – это полуавтоматический процесс. Мы в состоянии на определенное время задержать наше дыхание или участить дыхание произвольно. Однако в течение дня частота и глубина дыхания определяется в основном автоматически центральной нервной системой. На уровне продолговатого мозга имеются специальные центры регулирующие частоту и глубину дыхания в зависимости от концентрации в крови углекислого газа. Данный центр в головном мозге посредством нервных стволов связан с диафрагмой и обеспечивает ритмичное ее сокращение при акте дыхания. При повреждении центра регуляции дыхания или нервов связывающих этот центр с диафрагмой поддержание внешнего дыхания возможно, лишь при помощи искусственной вентиляции легких.

На самом деле функций у легких намного больше: поддержания кислотно-основного баланса крови (поддержание ph крови в пределах 7,35- 7,47), иммунная защита, очистка крови от микротромбов, регуляция коагуляции крови, выведение токсических летучих веществ. Однако целью данной статьи было освещение дыхательной функции легкого, основных механизмов приводящих к внешнему дыханию.

Газообмен необходим почти для всех организмов, без него невозможен нормальный обмен веществ и энергии, а, следовательно, и сама жизнь.

Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов , жиров и белков . При этом образуются CO 2 , вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и, в конечном итоге, выделяющегося из него CO 2 зависит не только от количества потребляемого О 2 , но и от того, что преимущественно окисляется: углеводы, жиры или белки. Отношение удаляемого из организма CO 2 к поглощённому за то же время O 2 называется дыхательным коэффициентом, который равен примерно 0,7 при окислении жиров, 0,8 при окислении белков и 1,0 при окислении углеводов. Количество энергии, освобождающееся на 1 л потребленного O 2 (калорический эквивалент кислорода), равно 20,9 кДж (5 ккал) при окислении углеводов и 19,7 кДж (4,7 ккал) при окислении жиров. По потреблению O 2 в единицу времени и по дыхательному коэффициенту можно рассчитать количество освободившейся в организме энергии.

Газообмен (соответственно и расход энергии) у пойкилотермных животных (холоднокровных) понижается с понижением температуры тела. Такая же зависимость обнаружена и у гомойотермных животных (теплокровных) при выключении терморегуляции (в условиях естественной или искусственной гипотермии); при повышении температуры тела (при перегреве, некоторых заболеваниях) газообмен увеличивается.

При понижении температуры окружающей среды газообмен у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции. Он увеличивается также после приёма пищи, особенно богатой белками (т. н. специфически-динамическое действие пищи). Наибольших величин газообмен достигает при мышечной деятельности. У человека при работе умеренной мощности он увеличивается, через 3–6 мин. после её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне. При работе большой мощности газообмен непрерывно возрастает; вскоре после достижения максимального для данного человека уровня (максимальная аэробная работа) работу приходится прекращать, так как потребность организма в O 2 превышает этот уровень. В первое время после окончания работы сохраняется повышенное потребление O 2 , используемого для покрытия кислородного долга, то есть для окисления продуктов обмена веществ, образовавшихся во время работы. Потребление O 2 может увеличиваться с 200–300 мл/мин. в состоянии покоя до 2000–3000 при работе, а у хорошо тренированных спортсменов - до 5000 мл/мин. Соответственно увеличиваются выделение CO 2 и расход энергии; одновременно происходят сдвиги дыхательного коэффициента, связанные с изменениями обмена веществ, кислотно-щелочного равновесия и лёгочной вентиляции.

Расчёт общего суточного расхода энергии у людей разных профессий и образа жизни, основанный на определениях газообмена важен для нормирования питания. Исследования изменений газообмена при стандартной физической работе применяются в физиологии труда и спорта, в клинике для оценки функционального состояния систем, участвующих в газообмене.

Сравнительное постоянство газообмена при значительных изменениях парциального давления O 2 в окружающей среде, нарушениях работы органов дыхания и т. п. обеспечивается приспособительными (компенсаторными) реакциями систем, участвующих в газообмене и регулируемых нервной системой .

У человека и животных газообмен принято исследовать в условиях полного покоя, натощак, при комфортной температуре среды (18–22 °C). Количества потребляемого при этом O 2 и освобождающейся энергии характеризуют основной обмен. Для исследования применяются методы, основанные на принципе открытой либо закрытой системы. В первом случае определяют количество выдыхаемого воздуха и его состав (при помощи химических или физических газоанализаторов), что позволяет вычислять количества потребляемого O 2 и выделяемого CO 2 . Во втором случае дыхание происходит в закрытой системе (герметичной камере либо из спирографа, соединённого с дыхательными путями), в которой поглощается выделяемый CO 2 , а количество потребленного из системы O 2 определяют либо измерением равного ему количества автоматически поступающего в систему O 2 , либо по уменьшению объёма системы.

Газообмен у человека происходит в альвеолах легких и в тканях тела.

Литература

  • Гинецинский А. Г., Лебединский А. В., Курс нормальной физиологии, М., 1956
  • Физиология человека, М., 1966, с. 134-56
  • Беркович Е. М., Энергетический обмен в норме и патологии, М., 1964
  • Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967, с. 186–237.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Газообмен" в других словарях:

    Газообмен … Орфографический словарь-справочник

    ГАЗООБМЕН, в биологии поглощение и выделение газа, особенно кислорода и углекислого газа, у живых организмов. У животных и других организмов, которые получают энергию в результате расщепления пищи в процессе химической реакции, называемой… … Научно-технический энциклопедический словарь

    Совокупность процессов обмена газов между организмом и окружающей средой; состоит в потреблении организмом О2, выделении СО2, незначит, кол в др. газообразных веществ и паров воды. Биол. значение Г. определяется его непосредств. участием в обмене … Биологический энциклопедический словарь

    ГАЗООБМЕН - процесс постоянного обмена газов (О2, CO2, N и др.) между организмом и окружающей средой при дыхании, фотосинтезе и др. У животных газообмен совершается всей поверхностью тела или через специальные органы (легкие, жабры и др.), у растений через… … Экологический словарь

    ГАЗООБМЕН, газообмена, мн. нет, муж. (научн.). Поглощение организмом кислорода и выделение углекислоты посредством дыхания. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Сущ., кол во синонимов: 1 обмен (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    ГАЗООБМЕН - ГАЗООБМЕН, т. е. обмен газов между организмом человека или животных и внешней средой, являясь одним из основных жизненных процессов, состоит в поглощении извне кислорода и в отдаче во внешнюю среду угольной кислоты и паров воды (а также газов,… … Большая медицинская энциклопедия

    газообмен - — Тематики биотехнологии EN gas exchange … Справочник технического переводчика

    ГАЗООБМЕН - поглощение л. из воздуха кислорода и отдача в окружающую среду углекислоты. Различают легочный и кожный Г. Последний составляет 1 2% от общего. В покое л. вдыхает 40 80 л воздуха в минуту и потребляет около 250 куб. см кислорода на 1 кг веса за … Справочник по коневодству

    I Газообмен совокупность процессов обмена газов между организмом и окружающей средой; состоит в потреблении кислорода и выделении углекислого газа с незначительными количествами газообразных продуктов и паров воды. Интенсивность Г.… … Медицинская энциклопедия

Книги

  • Дыхание и мышечная активность человека в спорте. Руководство для изучающих физиологию человека , Бреслав Исаак Соломонович, Волков Николай Иванович, Тамбовцева Ритта Викторовна. Предлагаемое вниманию читателей руководство по физиологии дыхания представляет синтез современных представлений о физиологических и биохимических процессах, обусловливающих газообмен в тканях…

Что такое газообмен? Без него не сможет обойтись практически ни одно живое существо. Газообмен в легких и тканях, а также крови помогает насыщать клетки питательными веществами. Благодаря ему мы получаем энергию и жизненные силы.

Что такое газообмен?

Для существования живым организмам необходим воздух. Он представляет собой смесь из множества газов, основную долю которых составляют кислород и азот. Оба эти газа являются важнейшими компонентами для обеспечения нормальной жизнедеятельности организмов.

В ходе эволюции разные виды выработали свои приспособления для их получения, у одних развились легкие, у других - жабры, а третьи используют только кожные покровы. При помощи этих органов осуществляется газообмен.

Что такое газообмен? Это процесс взаимодействия внешней среды и живых клеток, в ходе которого происходит обмен кислорода и углекислого газа. Во время дыхания вместе с воздухом в организм поступает кислород. Насыщая все клетки и ткани, он участвует в окислительной реакции, превращаясь в углекислый газ, который выводится из организма вместе с другими продуктами метаболизма.

Газообмен в легких

Каждый день мы вдыхаем больше 12 килограмм воздуха. В этом нам помогают легкие. Они являются самым объемным органом, способным вместить до 3 литров воздуха за один полный глубокий вдох. Газообмен в легких происходит при помощи альвеол - многочисленных пузырьков, которые переплетены с кровеносными сосудами.

Воздух попадает в них через верхние дыхательные пути, проходя трахею и бронхи. Соединенные с альвеолами капилляры забирают воздух и разносят его по кровеносной системе. В то же время они отдают альвеолам углекислый газ, который покидает организм вместе с выдохом.

Процесс обмена между альвеолами и сосудами называется двусторонней диффузией. Он происходит всего за несколько секунд и осуществляется благодаря разнице в давлении. У насыщенного кислородом атмосферного воздуха оно больше, поэтому он устремляется к капиллярам. Углекислый газ имеет меньшее давление, отчего и выталкивается в альвеолы.

Кровообращение

Без кровеносной системы газообмен в легких и тканях был бы невозможен. Наше тело пронизано множеством кровеносных сосудов различной длины и диаметра. Они представлены артериями, венами, капиллярами, венулами и т. д. В сосудах кровь непрерывно циркулирует, способствуя обмену газов и веществ.

Газообмен в крови осуществляется при помощи двух кругов кровообращения. При дыхании воздух начинается двигаться по большому кругу. В крови он переносится, прикрепляясь к специальному белку гемоглобину, который содержится в эритроцитах.

Из альвеол воздух попадает в капилляры, а затем в артерии, направляясь прямо к сердцу. В нашем организме оно исполняет роль мощного насоса, перекачивая насыщенную кислородом кровь к тканям и клеткам. Они, в свою очередь, отдают кровь, наполненную углекислым газом, направляя её по венулам и венам обратно к сердцу.

Проходя через правое предсердие, венозная кровь завершает большой круг. В правом желудочке начинается По нему кровь перегоняется в Она движется по артериям, артериолам и капиллярам, где совершает обмен воздухом с альвеолами, чтобы начать цикл заново.

Обмен в тканях

Итак, мы знаем, что такое газообмен легких и крови. Обе системы переносят газы и обмениваются ими. Но ключевая роль принадлежит тканям. В них происходят главные процессы, изменяющие химический состав воздуха.

Насыщает клетки кислородом, который запускает в них целый ряд окислительно-восстановительных реакций. В биологии они называются циклом Кребса. Для их осуществления необходимы ферменты, которые также приходят вместе с кровью.

В ходе образуются лимонная, уксусная и другие кислоты, продукты для окисления жиров, аминокислот и глюкозы. Это один из важнейших этапов, который сопровождает газообмен в тканях. Во время его протекания освобождается энергия, необходимая для работы всех органов и систем организма.

Для осуществления реакции активно используется кислород. Постепенно он окисляется, превращаясь в углекислый газ - СО 2 , который выделяется из клеток и тканей в кровь, потом в легкие и атмосферу.

Газообмен у животных

Строение организма и систем органов у многих животных значительно варьируется. Наиболее схожими с человеком являются млекопитающие. Небольшие животные, например планарии, не имеют сложных систем для обмена веществами. Для дыхания они используют внешние покровы.

Амфибии для дыхания используют кожные покровы, а также рот и легкие. У большинства животных, обитающих в воде, газообмен осуществляется при помощи жабр. Они представляют собой тонкие пластины, соединенные с капиллярами и переправляющие в них кислород из воды.

Членистоногие, например многоножки, мокрицы, пауки, насекомые, не обладают легкими. По всей поверхности тела у них расположены трахеи, которые направляют воздух прямо к клеткам. Такая система позволяет им быстро передвигаться, не испытывая одышки и усталости, ведь процесс образования энергии происходит быстрее.

Обмен газов у растений

В отличие от животных, у растений газообмен в тканях включает потребление и кислорода, и углекислого газа. Кислород они потребляют в процессе дыхания. Растения не обладают для этого специальными органами, поэтому воздух поступает в них через все части тела.

Как правило, листья имеют наибольшую площадь, и основное количество воздуха приходится именно на них. Кислород поступает в них через небольшие отверстия между клетками, называемые устьицами, перерабатывается и выводится уже в виде углекислого газа, как и у животных.

Отличительной особенностью растений является способность к фотосинтезу. Так, они могут преобразовывать неорганические компоненты в органические при помощи света и ферментов. Во время фотосинтеза поглощается углекислый газ и производится кислород, поэтому растения являются настоящими «фабриками» по обогащению воздуха.

Особенности

Газообмен является одной из важнейших функций любого живого организма. Он осуществляется при помощи дыхания и кровообращения, способствуя освобождению энергии и обмену веществ. Особенности газообмена заключаются в том, что он не всегда протекает одинаково.

В первую очередь он невозможен без дыхания, его остановка в течение 4 минут способна привести к нарушениям работы клеток мозга. В результате этого организм умирает. Существует множество заболеваний, при которых наблюдается нарушение газообмена. Ткани не получают достаточно кислорода, что замедляет их развитие и функции.

Неравномерность газообмена наблюдается и у здоровых людей. Он значительно увеличивается при усиленной работе мышц. Буквально за шесть минут он достигает предельной мощности и придерживается её. Однако при усилении нагрузки количество кислорода может начать увеличиваться, что также неприятно скажется на самочувствии организма.

Два губчатых органа, расположенные внутри грудной полости, - сообщаются с внешней средой через дыхательные пути и отвечают за жизненно важную для всего организма функцию, выполняя газообмен крови с окружающей средой. Снаружи орган покрыт плеврой, состоящей из двух листков образующих плевральную полость легких


Легкие - два объемных органа полуконусовидной формы, занимающие большую часть грудной полости. Каждое легкое имеет основание, которое поддерживается диафрагмой - мышцей, разделяющей грудную и брюшную полости; верхние части легких имеют округлую форму. Легкие разделены на доли глубокими щелями. В правом легком две щели, а в левом - всего одна.


Легочный ацинус - это функциональная единица легких, крошечный участок ткани, вентилируемый конечной бронхиолой, от которой отходят дыхательные бронхиолы, образующие далее альвеолярные каналы или альвеолярные ходы . В конце каждого альвеолярного канала находятся альвеолы, микроскопические эластичные шарики с тонкими стенками, наполненные воздухом; альвеолы составляют альвеолярный пучок или мешочек, где и происходит газообмен.


Тонкие стенки альвеол состоят из одного слоя клеток, окруженного слоем ткани, которая поддерживает их и отделяет от альвеол. Вместе с альвеолами тонкой мембраной отделены и кровеносные капилляры, пронизывающие легкие. Расстояние между внутренней стенкой кровеносных капилляров и альвеол составляет 0,5 тысячной доли миллиметра.



Человеческий организм нуждается в постоянном газообмене с окружающей средой: с одной стороны, организму необходим кислород для поддержания клеточной активности - он используется как «топливо», благодаря которому в клетках осуществляется метаболизм; с другой стороны, организму нужно освобождаться от углекислого газа - результата клеточного метаболизма, поскольку его накопление может вызвать интоксикацию. Клетки организма нуждаются в кислороде постоянно - например, нервы головного мозга едва ли могут существовать без кислорода даже несколько минут.


Молекулы кислорода (02) и углекислого газа (С02) циркулируют по крови, присоединяясь к гемоглобину красных кровяных телец, которые переносят их по всему организму. Попадая в легкие, эритроциты отдают молекулы углекислого газа и уносят молекулы кислорода посредством процесса диффузии: кислород присоединяется к гемоглобину, а углекислый газ попадает в капилляры внутри альвеол, и человек его выдыхает.

Кровь, обогащенная кислородом, выйдя из легких, направляется к сердцу, которое выбрасывает ее в аорту, после чего по артериям она достигает капилляров различных тканей. Там вновь происходит процесс диффузии: из крови кислород переходит в клетки, а из клеток в кровь попадает углекислый газ. Затем кровь вновь поступает к легким, чтобы обогатиться кислородом. Подробную информацию о физических и физиологических характеристиках газообмена можно найти в статье: "Газообмен и транспорт газов ".




Понравилась статья? Поделиться с друзьями: