Антибиотики обладающие бактериостатическим действием. Бактерицидное действие - это что такое? Препараты бактерицидного действия Какие группы антибиотиков оказывают бактерицидное действие

Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Антибиотики это группа природных или полусинтетических органических веществ, способных разрушать микробы или подавлять их размножение. На данный момент известно множество различных видов антибиотиков, наделенных различными свойствами. Знание этих свойств является основой правильного лечения антибиотиками. Индивидуальные качества и действие антибиотика главным образом зависит от его химической структуры. В этой статье мы расскажем о наиболее известных группах антибиотиках, покажем механизм их работы, спектр действия, возможности применения для лечения различных инфекций .

Группы антибиотиков
Антибиотики это вещества природного или полусинтетического происхождения . Получают антибиотики путем экстрагирования их из колоний грибков, бактерий, тканей растений или животных. В некоторых случаях исходную молекулу подвергают дополнительным химическим модификациям с целью улучшить определенные свойства антибиотика (полусинтетические антибиотики).

На данный момент существует огромное число всевозможных антибиотиков. Правда, в медицине используется лишь немногие из них, другие, из-за повышенной токсичности, не могут быть использованы для лечения инфекционных болезней у людей. Чрезвычайное разнообразие антибиотиков послужило причиной создания классификации и разделения антибиотиков на группы. При этом внутри группы собраны антибиотики со схожей химической структурой (происходящие из одной и той же молекулы сырья) и действием.

Ниже мы рассмотрим основные группы известных на сегодняшний день антибиотиков :
Бета-лактамные антибиотики
Группа бета-лактамных антибиотиков включает две большие подгруппы известнейших антибиотиков: пенициллины и цефалоспорины, имеющих схожую химическую структуру.

Группа пенициллинов

Пенициллины получаются из колоний плесневого грибка Penicillium откуда и происходит название этой группы антибиотиков. Основное действие пенициллинов связано с их способностью угнетать образование клеточной стенки бактерий и тем самым подавлять их рост и размножение. В период активного размножения многие виды бактерий очень чувствительны по отношению к пенициллину и потому действие пенициллинов бактерицидное.

Важным и полезным свойством пенициллинов является их способность проникать внутрь клеток нашего организма. Это свойство пенициллинов позволяет лечить инфекционные болезни, возбудитель которых «прячется» внутри клеток нашего организма (например, гонорея). Антибиотики из группы пенициллина обладают повышенной избирательностью и потому практически не влияют на организм человека, принимающего лечение.

К недостаткам пенициллинов можно отнести их быстрое выведение из организма и развитие резистентности бактерий по отношению к этому классу антибиотиков.

Биосинтетические пенициллины получают напрямую из колоний плесневых грибков. Наиболее известными биосинтетическими пенициллинами являются бензилпенициллин и феноксиметилпенициллин. Эти антибиотики используют для лечения ангины , скарлатины, пневмонии , раневых инфекций, гонореи, сифилиса.

Полусинтетические пенициллины получаются на основе биосинтетических пенициллинов путей присоединения различных химических групп. На данный момент существует большое количество полусинтетический пенициллинов: амоксициллин, ампициллин, карбенициллин, азлоциллин.

Важным преимуществом некоторых антибиотиков из группы полусинтетических пенициллинов является их активность по отношению к пенициллинустойстойчивым бактериям (бактерии, разрушающие биосинтетические пенициллины). Благодаря этому полусинтетические пенициллины обладают более широким спектром действия и потому могут использоваться в лечении самых разнообразных бактериальных инфекций.

Основные побочные реакции, связанные с применением пенициллинов носят аллергический характер и иногда являются причиной отказа от использования этих препаратов.

Группа цефалоспоринов

Цефалоспорины также относятся к группе бета-лактамных антибиотиков и обладают структурой, схожей со структурой пенициллинов. По этой причине некоторые побочные эффекты их двух групп антибиотиков совпадают (аллергия).

Цефалоспорины обладают высокой активностью по отношению к широкому спектру различных микробов и потому используются в лечении многих инфекционных болезней. Важным преимуществом антибиотиков из группы цефалоспоринов является их активность по отношению к микробам устойчивым к действию пенициллинов (пенициллинустойчивые бактерий).

Существует несколько поколений цефалоспоринов :
Цефалоспорины I поколения (Цефалотин, Цефалексин, Цефазолин) активны по отношению большого количества бактерий и используются для лечения различных инфекций дыхательных путей, мочевыделительной системы, для профилактики постоперационных осложнений. Антибиотики этой группы, как правило, хорошо переносятся и не вызывают серьезных побочных реакций.

Цефалоспорины II поколения (Цефомандол, Цефуроксим) обладают высокой активностью по отношению к бактериям, населяющим желудочно-кишечный тракт, и потому могут быть использованы для лечения различных кишечных инфекций. Также эти антибиотики используются для лечения инфекций дыхательных и желчевыводящих путей. Основные побочные реакции связаны с возникновением аллергии и нарушений работы желудочно-кишечного тракта.

Цефалоспорины III поколения (Цефоперазон, Цефотаксим, Цефтриаксон) новые препараты, обладающие высокой активностью по отношению к широкому спектру бактерий. Преимуществом этих препаратов является их активность по отношению к бактериям нечувствительным к действию других цефалоспоринов или пенициллинов и способность длительной задержки в организме. Используют эти антибиотики для лечения тяжелых инфекций не поддающихся лечению другими антибиотиками. Побочные эффекты этой группы антибиотиков связаны с нарушением состава микрофлоры кишечника или возникновением аллергических реакций.

Антибиотики из группы макролидов

Макролиды это группа антибиотиков со сложной циклической структурой. Наиболее известные представители антибиотиков из группы макролидов это Эритромицин , Азитромицин , Рокситромицин .

Действие антибиотиков макролидов на бактерии бактериостатическое – антибиотики блокируют структуры бактерий, синтезирующие белки , в результате чего микробы теряют способность размножаться и расти.

Макролиды активны по отношению ко многим бактериям, однако самым замечательным свойством макролидов, пожалуй, является их способность проникать внутрь клеток нашего организма и разрушать микробы, не имеющие клеточной стенки. К таким микробам относятся хламидии и риккетсии – возбудители атипичной пневмонии, урогенитального хламидиоза и других болезней, неподдающихся лечению другими антибиотиками.

Другой важной особенностью макролидов является их относительная безопасность и возможность проведения длительного лечения, хотя современные программы лечения с использованием макролидов предусматривают ультракороткие курсы длительностью в три дня.

Антибиотики из группы тетрациклинов

Наиболее известными антибиотиками из группы тетрациклинов являются Тетрациклин , Доксициклин , Окситетрациклин, Метациклин . Действие антибиотиков из группы тетрациклинов бактериостатическое. Также как и макролиды тетрациклины способны блокировать синтез белков в клетках бактерий, однако, в отличие от макролидов, тетрациклины обладают меньшей избирательностью и потому в больших дозах или при длительном лечении могут тормозить синтез белков в клетках организма человека. В то же время тетрациклины остаются незаменимыми «помощниками» в лечении многих инфекций. Основные направления использования антибиотиков из группы тетрациклинов это лечение инфекций дыхательных и мочевыводящих путей, лечения тяжелых инфекций типа сибирской язвы, туляремии, бруцеллеза и пр.

Несмотря на относительную безопасность, при длительном использовании тетрациклины могут быть причиной возникновения тяжелых побочных эффектов: гепатит , поражение скелета и зубов (тетрациклины противопоказаны детям до 14 лет), пороки развития (противопоказание для использования во время беременности), аллергия.

Широкое применение получили мази содержащие тетрациклин. Применяют для локального лечения бактериальных инфекций кожи и слизистых оболочек .

Антибиотики из группы аминогликозидов

Аминогликозиды это группа антибиотиков, к которой относятся такие препараты как

Антибиотики представляют собой химические соединения, используемые для уничтожения или ингибирования роста болезнетворных бактерий.

Антибиотики – это группа органических антибактериальных средств, полученных из бактерий или плесени, которые являются токсичными для других бактерий.

Тем не менее, этот термин теперь используется в более широком смысле, и включает в себя антибактериальные средства, произведенные из синтетических и полусинтетических соединений.

История антибиотиков

Пенициллин был первым антибиотиком, который успешно использовался при лечении бактериальных инфекций. Александр Флеминг впервые обнаружил его в 1928 году, но его потенциал для лечения от инфекций на тот период времени не был признан.

Десять лет спустя британский биохимик Эрнст Чейн и австралийский патолог Флори очистили, доработали пенициллин и показали эффективность препарата против многих серьезных бактериальных инфекций. Это положило начало производству антибиотиков, и с 1940 года препараты уже активно использовались для лечения.

Ближе к концу 1950-х годов ученые начали экспериментировать с добавлением различных химических групп к сердцевине молекулы пенициллина для генерации полусинтетических версий лекарственного средства. Таким образом, препараты пенициллинового ряда стали доступны для лечения инфекций, вызванных разными подвидами бактерий, такими как стафилококки, стрептококки, пневмококки, гонококки и спирохеты.

Лишь туберкулезная палочка (микобактерия туберкулеза) не поддавалась воздействию пенициллиновых препаратов. Этот организм оказался весьма чувствительным к стрептомицину, антибиотику, который был выделен в 1943 г. Помимо того, стрептомицин продемонстрировал активность против многих других видов бактерий, в том числе бациллы брюшного тифа.

Двумя следующими значительными открытиями стали вещества грамицидин и тироцидин, которые производятся бактериями рода Bacillus. Обнаруженные в 1939 году американским микробиологом французского происхождения Рене Дюбо, они были ценны в лечении поверхностных инфекций, но слишком токсичны для внутреннего использования.

В 1950-е годы исследователи обнаружили цефалоспорины, которые связаны с пенициллином, но выделены из культуры Cephalosporium Acremonium.

Следующее десятилетие открыло человечеству класс антибиотиков, известных как хинолоны. Группы хинолонов прерывают репликацию ДНК – важный шаг в размножения бактерий. Это позволило сделать прорыв в лечении инфекций мочевыделительной системы, инфекционного поноса, а также других бактериальных поражений организма, в том числе костей и белых кровяных телец.

Классификация антибактериальных препаратов

Антибиотики могут быть классифицированы по нескольким направлениям.

Наиболее распространенный метод – классификация антибиотиков по механизму действия и химическому строению.

По химической структуре и механизму действия

Группы антибиотиков, разделяющие ту же самую или аналогичную химическую структуру, как правило, показывают аналогичные модели антибактериальной активности, эффективности, токсичности и аллергенного потенциала (таблица 1).

Таблица 1 – Классификация антибиотиков по химической структуре и механизму действия (включая международные названия).

Виды антибиотиков (химическая структура) Механизм действия Названия препаратов
В-лактамные антибиотики:
  • Пенициллины;
  • Цефалоспорины;
  • Карбапенемы.
  • Пенициллины:

    • Пенициллин;
    • Амоксицилин;
    • Флуклоксациллин.
  • Цефалоспорины:

    • Цефокситин;
    • Цефотаксим;
    • Цефтриаксон;
  • Карбапенемы: Имипенем.
Макролиды
  • Эритромицин;
  • Азитромицин;
  • Кларитромицин.
Тетрациклины Ингибирование бактериального синтеза белка
  • Тетрациклин;
  • Миноциклин;
  • Доксициклин;
  • Лимециклин.
Фторхинолоны
  • Норфлоксацин;
  • Ципрофлоксацин;
  • Эноксацин;
  • Офлоксацин.
Сульфамиды Блокирует бактериальный метаболизм клеток путем ингибирования ферментов
  • Ко-тримоксазол;
  • Триметоприм.
Аминогликозиды Ингибирование бактериального синтеза белка
  • Гентамицин;
  • Амикацин.
Имидазолы Ингибирует синтез бактериальной ДНК Метронидазол
Пептиды Ингибирование бактериального синтеза клеточной стенки Бацитрацин
Линкозамиды Ингибирование бактериального синтеза белка
  • Клиндамицин;
  • Линкомицин.
Другие Ингибирование бактериального синтеза белка
  • Фузидиевая кислота;
  • Мупироцин.

Антибиотики работают через различные механизмы их воздействия. Некоторые из них проявляют антибактериальные свойства путем ингибирования бактериального синтеза клеточной стенки. Эти представители называются β-лактамные антибиотики. Они специфически действуют на стенки определенных видов бактерий, угнетая механизм связывания боковых цепочек пептидов их клеточной стенки. В результате клеточная стенка и форма бактерий меняется, что приводит к их гибели.

Другие противомикробные средства, такие как аминогликозиды, хлорамфеникол, эритромицин, клиндамицин и их разновидности, ингибируют белковый синтез в бактериях. Основной процесс синтеза белков у клеток бактерий и клеток живых существ схож, но белки, участвующие в процессе, разные. Антибиотики, используя эти различия, связывают и ингибируют белки бактерий, тем самым, предотвращая синтез новых белков и новых бактериальных клеток.

Антибиотики, такие как полимиксин В и полимиксин Е (колистин) соединяются с фосфолипидами в клеточной мембране бактерии и препятствуют выполнению их основных функций, выступая в качестве селективного барьера. Клетка бактерии погибает. Так как другие клетки, включая клетки человека, имеют подобные или идентичные фосфолипиды, эти препараты довольно токсичны.

Некоторые группы антибиотиков, такие как сульфонамиды, являются конкурентными ингибиторами синтеза фолиевой кислоты (фолата), который является важным предварительным шагом в синтезе нуклеиновых кислот.

Сульфаниламиды способны ингибировать синтез фолиевой кислоты, поскольку они сходны с промежуточным соединением — пара-аминобензойной кислотой, которая в последствии с помощью фермента превращается в фолиеву кислоту.

Сходство в структуре между этими соединениями приводит к конкуренции между пара-аминобензойной кислотой и сульфонамидом за фермент, ответственный за превращение промежуточного продукта в фолиеву кислоту. Эта реакция обратима после удаления химического вещества, которое приводит к ингибированию, и не приводит к гибели микроорганизмов.

Такой антибиотик, как рифампицин, препятствует синтезу бактерий путем связывания бактериального фермента, ответственного за дублирование РНК. Клетки человека и бактерии используют сходные, но не идентичные ферменты, поэтому применение препаратов в терапевтических дозах не влияет губительно на клетки человека.

По спектру действия

Антибиотики могут быть классифицированы по их спектру действия:


Агенты узкого диапазона действия (например, пенициллин) влияют в первую очередь на грамположительные микроорганизмы. Антибиотики широкого спектра воздействия, такие как доксициклин и хлорамфеникол, влияют как на грамположительные, так и некоторые грамотрицательные микроорганизмы.

Термины грамположительные и грамотрицательные используются для проведения различия между бактериями, у которых клетки стенок состоят из толстого сетчатого пептидогликана (пептид-сахар полимера), и бактериями, имеющими клеточные стенки только с тонкими слоями пептидогликана.

По происхождению

Антибиотики могут быть классифицированы по происхождению на природные антибиотики и антибиотики полусинтетического происхождения (химиопрепараты).


В настоящее время существует 14 групп антибиотиков полусинтетического происхождения. К ним относят:

  1. Сульфаниламиды.
  2. Группа фторхинолов/хинолонов.
  3. Имидазоловые препараты.
  4. Оксихинолин и его производные.
  5. Производные нитрофурана.

Использование и применение антибиотиков

Основной принцип применения противомикробных препаратов основан на гарантии, что пациент получает то средство, к которому чувствителен целевой микроорганизм, при достаточно высокой концентрации, чтобы быть эффективными, но не вызывают побочных эффектов, и в течение достаточного промежутка времени, чтобы гарантировать, что инфекция полностью ликвидирована.

Антибиотики различаются по спектру временного воздействия. Некоторые из них весьма специфичны. Другие, такие как тетрациклин, действуют против широкого спектра различных бактерий.

Они особенно полезны в борьбе со смешанными инфекциями и при лечении инфекций, когда нет времени для проведения тестов на чувствительность. В то время как некоторые антибиотики, такие как полусинтетические пенициллины и хинолоны, могут быть приняты перорально, другие должны применяться в виде внутримышечных или внутривенных инъекций.

Способы применения противомикробных препаратов представлены на рисунке 1.

Проблемой, которая сопровождает антибактериальную терапию с первых дней открытия антибиотиков, является сопротивление бактерий к антимикробным препаратам.

Лекарственное средство может убить практически всех бактерий, вызывающих заболевания у пациента, но несколько бактерий, которые являются генетически менее уязвимыми к данному препарату, могут выжить. Они продолжают воспроизводиться и передают свою устойчивость другим бактериям через процессы генного обмена.

Беспорядочное и неточное использование антибиотиков способствует распространению бактериальной резистентности.

Антибиотики - группа соединений природного происхождения или их полусинтетических и синтетических аналогов, обладаю­щих антимикробным или противоопухолевым действием.

К настоящему времени известно несколько сотен подобных ве­ществ, но лишь немногие из них нашли применение в медицине.

Основные классификации антибиотиков

В основу классификации антибиотиков также положено не­сколько разных принципов.

По способу получения их делят:

  • на природные;
  • синтетические;
  • полусинтетические (на начальном этапе получают естествен­ным путем, затем синтез ведут искусственно).

Продуценты антибиотиков:

  • по преимуществу актиномицеты и плесневые грибы;
  • бактерии (полимиксины);
  • высшие растения (фитонциды);
  • ткани животных и рыб (эритрин, эктерицид).

По направленности действия:

  • антибактериальные;
  • противогрибковые;
  • противоопухолевые.

По спектру действия - числу видов микроорганизмов, на кото­рые действуют антибиотики:

  • препараты широкого спектра действия (цефалоспорины 3-го поколения, макролиды);
  • препараты узкого спектра действия (циклосерин, линкомицин, бензилпенициллин, клиндамицин). В некоторых случаях могут быть предпочтительнее, так как не подавляют нормальную микрофлору.

Классификация по химическому строению

По химическому строению антибиотики делятся:

  • на бета-лактамные антибиотики;
  • аминогликозиды;
  • тетрациклины;
  • макролиды;
  • линкозамиды;
  • гликопептиды;
  • полипептиды;
  • полиены;
  • антрациклиновые антибиотики.

Основу молекулы бета-лактамных антибиотиков составляет бета-лактамное кольцо. К ним относятся:

  • пенициллины ~ группа природных и полусинтетических анти­биотиков, молекула которых содержит 6-аминопенициллано-вую кислоту, состоящую из 2 колец - тиазолидонового и бета-лактамного. Среди них выделяют:

Биосинтетические (пенициллин G - бензилпенициллин);

  • аминопенициллины (амоксициллин, ампициллин, бекампи-циллин);

Полусинтетические «антистафилококковые» пенициллины (оксациллин, метициллин, клоксациллин, диклоксациллин, флуклоксациллин), основное преимущество которых - ус­тойчивость к микробным бета-лактамазам, в первую оче­редь стафилококковым;

  • цефалоспорины - это природные и полусинтетические антибио­тики, полученные на основе 7-аминоцефалоспориновой кисло­ты и содержащие цефемовое (также бета-лактамное) кольцо,

т. е. по структуре они близки к пенициллинам. Они делятся на иефалоспорины:

1-го поколения - цепорин, цефалотин, цефалексин;

  • 2-го поколения - цефазолин (кефзол), цефамезин, цефаман-дол (мандол);
  • 3-го поколения - цефуроксим (кетоцеф), цефотаксим (кла-форан), цефуроксим аксетил (зиннат), цефтриаксон (лонга-цеф), цефтазидим (фортум);
  • 4-го поколения - цефепим, цефпиром (цефром, кейтен) и др.;
  • монобактамы - азтреонам (азактам, небактам);
  • карбопенемы - меропенем (меронем) и имипинем, применяе­мый только в комбинации со специфическим ингибитором почечной дегидропептидазы циластатином - имипинем/цилас-татин (тиенам).

Аминогликозиды содержат аминосахара, соединенные глико-зидной связью с остальной частью (агликоновым фрагментом) молекулы. К ним относятся:

  • синтетические аминогликозиды - стрептомицин, гентамицин (гарамицин), канамицин, неомицин, мономицин, сизомицин, тобрамицин (тобра);
  • полусинтетические аминогликозиды - спектиномицин, амика-цин (амикин), нетилмицин (нетиллин).

Основу молекулы тетрациклинов составляет полифункцио­нальное гидронафтаценовое соединение с родовым названием тетрациклин. Среди них имеются:

  • природные тетрациклины - тетрациклин, окситетрациклин (клинимицин);
  • полусинтетические тетрациклины - метациклин, хлортетрин, доксициклин (вибрамицин), миноциклин, ролитетрациклин. Препараты группы макролидв содержат в своей молекуле мак-роциклическое лактоновое кольцо, связанное с одним или не­сколькими углеводными остатками. К ним относятся:
  • эритромицин;
  • олеандомицин;
  • рокситромицин (рулид);
  • азитромицин (сумамед);
  • кларитромицин (клацид);
  • спирамицин;
  • диритромицин.

К линкозамидам относятся линкомицин и клиндамицин. Фар­макологические и биологические свойства этих антибиотиков очень близки к макролидам, и, хотя в химическом отношении это совершенно иные препараты, некоторые медицинские ис­точники и фармацевтические фирмы — производители хими-опрепаратов, например делацина С, относят линкозамины к группе макролидов.

Препараты группы гликопептидов в своей молекуле содержат замещенные пептидные соединения. К ним относятся:

  • ванкомицин (ванкацин, диатрацин);
  • тейкопланин (таргоцид);
  • даптомицин.

Препараты группы полипептидов в своей молекуле содержат остатки полипептидных соединений, к ним относятся:

  • грамицидин;
  • полимиксины М и В;
  • бацитрацин;
  • колистин.

Препараты группы поливное в своей молекуле содержат не­сколько сопряженных двойных связей. К ним относятся:

  • амфотерицин В;
  • нистатин;
  • леворин;
  • натамицин.

К антрациклиновым антибиотикам относятся противоопухоле­вые антибиотики:

  • доксорубицин;
  • карминомицин;
  • рубомицин;
  • акларубицин.

Есть еще несколько достаточно широко используемых в на­стоящее время в практике антибиотиков, не относящихся ни к одной из перечисленных групп: фосфомицин, фузидиевая ки­слота (фузидин), рифампицин.

В основе антимикробного действия антибиотиков, как и дру­гих химиотерапевтических средств, лежит нарушение мгтабо-лизма микробных клеток.

Механизм антимикробного действия антибиотиков

По механизму антимикробного действия антибиотики можно разделить на следующие группы:

  • ингибиторы синтеза клеточной стенки (муреина);
  • вызывающие повреждение цитоплазматической мембраны;
  • подавляющие белковый синтез;
  • ингибиторы синтеза нуклеиновых кислот.

К ингибиторам синтеза клеточной стенки относятся:

  • бета-лактамные антибиотики - пенициллины, цефалоспори-ны, монобактамы и карбопенемы;
  • гликопептиды - ванкомицин, клиндамицин.

Механизм блокады синтеза бактериальной клеточной стенки ванкомицином. отличается от такового у пенициллинов и це-фалоспоринов и соответственно не конкурирует с ними за места связывания. Поскольку пептидогликана нет в стенках живот­ных клеток, то эти антибиотики обладают очень низкой ток­сичностью для макроорганизма, и их можно применять в вы­соких дозах (мегатерапия).

К антибиотикам, вызывающим повреждение цитоплазматиче­ской мембраны (блокирование фосфолипидных или белковых компонентов, нарушение проницаемости клеточных мембран, изменение мембранного потенциала и т. д.), относятся:

  • полиеновые антибиотики - обладают ярко выраженной проти­вогрибковой активностью, изменяя проницаемость клеточной мембраны путем взаимодействия (блокирования) со стероид­ными компонентами, входящими в ее состав именно у грибов, а не у бактерий;
  • полипептидные антибиотики.

Самая многочисленная группа антибиотиков - подавляющие бел­ковый синтез. Нарушение синтеза белка может происходить на всех уровнях, начиная с процесса считывания информации с ДНК и кончая взаимодействием с рибосомами - блокирование связывания транспортной т-РНК с ЗОБ-субъединицами рибо­сом (аминогликозиды), с 508-субъединицами рибосом (макро-лиды) или с информационной и-РНК (на 308-субъединице ри­босом - тетрациклины). В эту группу входят:

  • аминогликозиды (например, аминогликозид гентамицин, угне­тая белковый синтез в бактериальной клетке, способен нару­шать синтез белковой оболочки вирусов и поэтому может об­ладать противовирусным действием);
  • макролиды;
  • тетрациклины;
  • хлорамфеникол (левомицетин), нарушающий синтез белка микробной клеткой на стадии переноса аминокислот на рибо­сомы.

Ингибиторы синтеза нуклеиновых кислот обладают не только антимикробной, но и цитостатической активностью и поэтому используются как противоопухолевые средства. Один из анти­биотиков, относящихся к этой группе, - рифампицин - инги-бирует ДНК-зависимую РНК-полимеразу и тем самым блоки­рует синтез белка на уровне транскрипции.

Тысячелетия бактерии вызывали огромное количество заболеваний, против которых медицина была бессильна. Однако в 1928 году британский бактериолог Александр Флеминг сделал случайное, но действительно эпохальное открытие. Он занимался изучением различных свойств стафилококков, которых выращивал в лабораторных чашках. Однажды после длительного отсутствия Флеминг заметил, что на одной из чашек образовался плесневый грибок, который убил всех стафилококков. Из подобных плесеней был выделен первый антибиотик – пенициллин.

Эра антибиотиков позволила медицине сделать огромный шаг вперед. Благодаря им врачи смогли эффективно лечить многочисленные инфекционные заболевания, которые раньше приводили к летальному исходу. Хирурги получили возможность проводить тяжелые и длительные операции, поскольку антибиотики многократно снизили частоту послеоперационных инфекционных осложнений.

Со временем фармакологи находили все новые и новые вещества, которые губительно воздействовали на бактерий. На сегодняшний день в арсенале врачей имеется широчайший спектр антибактериальных препаратов.

По своему влиянию на бактерии выделяют:

  1. Бактериостатические антибиотики – не убивают бактерий, но блокируют у них возможность размножаться. Из данной группы препаратов отличным терапевтическим эффектом обладает итальянский антибиотик Зитромакс, который содержит 500 мг азитромицина. В высоких концентрациях препарат обладает бактерицидным действием.
  2. Бактерицидные антибиотики – уничтожают бактерий, которые затем выводятся из организма. Отлично себя зарекомендовали препараты фторхинолонового ряда, например ципрофлоксацин. Он входит в состав высокоэффективного итальянского антибиотика Ципроксин 250 мг и Ципроксин 500 мг.

По химической структуре выделяют:

  1. Пенициллины – бактерицидные антибиотики, которые вырабатываются грибами рода Penicillium. Препараты: Бензилпенициллин, Оксациллин, Ампициллин, Амоксициллин и др.
  2. Цефалоспорины – бактерицидные антибиотики. Применяются для уничтожения широкого спектра бактерий, в том числе устойчивых к пенициллину. Препараты: I поколение – Цефазолин, Цефалексин, II поколение – Цефуроксим, Цефаклор, III поколение – Цефтриаксон (в виде порошка + вода для инъекций: Фидато 1г/3,5 мл, Роцефин 1г/3,5 мл), Цефиксим (Супрацеф 400 мг, Цефиксорал 400 мг, Супракс 400 мг), Цефодизим (Тимесеф 1г/4 мл порошок + вода для инъекций), IV поколение - Цефепим.
  3. Карбопинемы – резервные антибиотики с бактерицидным действием. Применяются только при очень тяжелых инфекциях, в том числе внутрибольничных. Препараты: Имипенем, Меропенем.
  4. Макролиды – обладают бактериостатическим эффектом. Относятся к числу наименее токсичных антибиотиков. В высоких концентрациях проявляют бактерицидный эффект. Препараты: Эритромицин, Азитромицин (Зитромакс 500 мг), Мидекамицин, Кларитромицин (Клацид 500 мг - обладает широким спектром действия. Клацид 500 мг также существует в форме таблеток с модифицированным высвобождением).
  5. Хинолоны и фторхинолоны – очень эффективные бактерицидные средства широкого спектра действия. Если какой-либо другой препарат не оказывает лечебного эффекта, то прибегают к антибиотикам именно этой группы. Препараты: Налидиксовая кислота, Ципрофлоксацин (Ципроксин 250 мг и Ципроксин 500 мг), Норфлоксацин и др.
  6. Тетрациклины – бактериостатические антибиотики, которые применяются для лечения болезней дыхательной системы, мочевыводящих путей и тяжелых инфекций типа сибирской язвы, туляремии и бруцеллеза. Препараты: Тетрациклин, Доксициклин.
  7. Аминогликазиды – бактерицидные антибиотики с высокой токсичностью. Применяются для лечения тяжелых инфекций при перитонитах или заражении крови. Препараты: Стрептомицин, Гентамицин, Амикацин.
  8. Левомицетины – бактерицидные антибиотики, имеют повышенную опасность серьезных осложнений при приеме внутрь. Использование таблетированной формы ограничено – только при серьезных инфекциях костного мозга. Препараты: Хлорамфеникол, Ируксол мазь для наружного применения, Синтомицин.
  9. Гликопептиды – обладают бактерицидным действием. Бактериостатически действуют против энтерококков, некоторых видов стафилококков и стрептококков. Препараты: Ванкомицин, Тейкопланин.
  10. Полимиксины – бактерицидные антибиотики с достаточно узким спектром действия: синегнойная палочка, шигеллы, сальмонеллы, E. coli, клебсиеллы, энтеробактер. Препараты: Полимиксин B, Полимиксин M.
  11. Сульфаниламиды – сегодня используются достаточно редко, так как многие бактерии выработали к ним устойчивость. Препараты: Сульфадимидин, Сульфален, Сульфадиазин.
  12. Нитрофураны – оказывают бактериостатический и бактерицидный эффект в зависимости от концентрации. Применяются редко при неосложненных инфекциях с легким течением. Препараты: Фуразолидон, Нифурател, Фуразидин.
  13. Линкозамиды – бактериостатические антибиотики. В больших концентрациях проявляют бактерицидное действие. Препараты: Линкомицин, Клиндомицин.
  14. Противотуберкулезные антибиотики – специализированные антибиотики для уничтожения микобактерии туберкулеза. Препараты: Изониазид, Рифампицин, Этамбутол, Пиразинамид, Протионамид и др.
  15. Прочие антибиотики - Грамицидин, Гелиомицин, Диуцифон, и другие, в том числе с противогрибковым эффектом – Нистатин и Амфотерицин B.

Каждый антибиотик имеет свой механизм бактерицидного или бактериостатического действия. Поэтому препараты из каждой группы способны воздействовать только на определенные виды микроорганизмов. По этой причине, при решении вопроса "Какой антибиотик лучше?" необходимо сначала точно установить возбудителя инфекции, а затем принимать именно тот антибиотик, который эффективен против данной бактерии.

Существует также иной способ лечения, который пользуется огромной популярностью у современных врачей и пациентов. Они назначают антибактериальные препараты с очень широким спектром действия. Это позволяет не устанавливать вид бактерии и начать лечение немедленно. Если выбранный препарат не создает необходимого лечебного эффекта, то его меняют на другой антибиотик широкого спектра действия.

Данный подход позволяет сэкономить значительные средства пациенту. Посудите сами: хороший комплекс анализов для выявления мочеполовой инфекции обойдётся пациенту в сумму, более 30 000 рублей. А упаковка новейшего антибиотика Зитромакс стоит всего 4 500 руб. Антибиотик Зитромакс это антибиотик широкого спектра действия, он покрывает значительную часть спектра всех распространённых инфекций и вероятность излечения им без установления возбудителя очень велика. А если выбор оказался всё-таки неточным, то назначается антибиотик, покрывающий другой спектр возможных инфекций, что уже приближает результативность лечения к 100%. При этом препараты заодно уничтожают ещё ряд болезнетворных бактерий, которые пока не успели причинить организму заметный при общей диагностики вред. Так что лечение антибиотиками широкого спектра действия получило своё распространение вполне обосновано и будет в чести ещё, вероятно, очень долго, до тех пор, пока стоимость и достоверность анализов не улучшится хотя бы на порядок.

Мы рассмотрели 15 разновидностей антибиотиков. Казалось бы, с таким огромным набором самых разнообразных антибиотиков проблема бактериальных инфекций должна быть навсегда решена. Однако под влиянием препаратов бактерии начали вырабатывать различные защитные механизмы. Постепенно некоторые из них и вовсе потеряли чувствительность к определенным антибиотикам. Еще Флеминг заметил, что если на бактерий воздействуют малыми дозами пенициллина или его влияние кратковременное, то бактерии не умирали. Более того, они становились устойчивыми к обычным дозам пенициллина.

На сегодняшний день антибактериальные препараты находятся в свободной продаже. Многие пациенты зачастую при малейших признаках простудного заболевания сразу начинают принимать антибиотики. При этом они забывают, что подобные простудные болезни зачастую вызывают вирусы. Антибиотики же абсолютно не влияют на вирусы. Прием антибиотика в этом случае только усилит токсическую нагрузку на организм и будет способствовать прогрессированию заболевания .

Поэтому крайне важно соблюдать определенные правила антибактериальной терапии :

  1. Принимать антибиотики необходимо только при бактериальных инфекциях!
  2. Строго соблюдать дозировку препарата, кратность приема и длительность лечения! Обычно препараты принимают 7 дней, если иное не прописано в прилагаемой инструкции.
  3. Крайне желательно определять вид бактерии возбудителя и его чувствительность к разным видам антибактериальных препаратов. Затем можно принимать антибиотик узкого спектра действия (именно против данного возбудителя). Неадекватный прием антибиотиков широкого спектра действия ведет к появлению устойчивых бактерий.
  4. Для повышения эффективности лечения при тяжелых инфекциях можно принимать антибиотики с различным спектром действия или с разными путями введения (инъекции, таблетки, мази, суппозитории и др.).
  5. Антибиотикотерапию рекомендовано дополнять приемом пребиотиков и пробиотиков, которые способствуют сохранению нормальной микрофлоры кишечника (Бифидумбактерин, Бифинорм, Лактобактерин, Лактулоза, Линекс, Хилак-форте).

Таким образом, необходимо четко понимать когда, как и какие именно антибактериальные препараты следует принимать. Прием антибактериального препарата должен проводиться строго по инструкции. Соблюдайте правила антибактериальной терапии - это поможет антибиотику действовать эффективно и быстро. При всём развитии медицинской науки - не существует антибиотика от всех бактерий. Определите конкретного возбудителя и воздействуйте на него целевым антибиотиком. Антибиотики вам здорово помогут, если вы - поможете антибиотикам, и подбор целевого антибиотика - лучший образ действия.

Грамотный прием антибиотиков - это не только залог быстрого выздоровления. Правильное лечение способствует сохранению эффективности для вас антибактериального препарата на долгие годы. Ведь после такого эффективного лечения никаких патогенных бактерий не остается в организме вовсе. В этом случае не может быть и речи об образовании бактерий, устойчивых к данному лекарственному средству.

Hg 2+. Cu 2+), химиотерапевтические средства (сульфаниламиды, препараты мышьяка) и другие вещества, задерживающие полностью размножение бактерий или другие микроорганизмов, т. е. вызывающие Бактериостаз. Действие Б. в. обратимо: при их удалении, добавлении инактиваторов Б. в. рост бактерий возобновляется. Например, действие ионов металлов прекращается в присутствии сероводорода, освобождающего от них поверхность бактериальных клеток. Действие Б. в. прекращают также вещества, обладающие большой адсорбционной способностью (например, белки). Этим объясняется снижение активности Б. в. кровью, гноем и т. п. В малых концентрациях бактериостатическим действием обладают также Бактерицидные вещества. Угнетая размножение болезнетворных микробов в организме человека или животных, Б. в. действуют как лечебные препараты. С помощью безвредных для человека Б. в. предохраняют от порчи микробами различные пищевые продукты, виноградное сусло, молоко и т. п. Для этого применяют бензойную кислоту, окуривание сернистым газом, перекись водорода, различные антибиотики, не употребляемые в медицинской практике.

Большая советская энциклопедия. - М. Советская энциклопедия. 1969-1978 .

Смотреть что такое Бактериостатические вещества в других словарях:

БАКТЕРИОСТАТИЧЕСКИЕ ВЕЩЕСТВА - бактериостатики, вещества, обладающие свойством временно приостанавливать размножение бактерий. Выделяются многими микроорганизмами (актиномицетами, грибами), а также некоторыми высшими растениями; оказывают регулирующее действие на популяции … Экологический словарь

Бактериостатические агенты б средства - Бактериостатические агенты, б. средства * бактэрыястатычныя агенты, б. сродкі * bacteriostatic agents or b. remediums вещества, вызывающие остановку или за медление роста бактерий, но не уничтожающие их. К ним относятся сульфаниламидные препараты … Генетика. Энциклопедический словарь

Бактерии - (греч. bakterion палочка) большая группа (тип) микроскопических, преимущественно одноклеточных организмов, обладающих клеточной стенкой, содержащих много дезоксирибонуклеиновой кислоты (ДНК), имеющих примитивное ядро, лишённое видимых … Большая советская энциклопедия

Бактериостаз - (от Бактерии и греч. stasis cтояние на месте) полная задержка роста и размножения бактерий, вызванная неблагоприятными физическими или химическими факторами или отсутствием необходимых условий для их роста (влажность, температура, pH … Большая советская энциклопедия

Антибиотики - I Антибиотики (греч. anti против + bios жизнь) образуемые микроорганизмами, высшими растениями или тканями животных организмов вещества, а также полусинтетические и синтетические аналоги этих веществ, избирательно подавляющие развитие … Медицинская энциклопедия

Антибиотики - Тест на чувствительность бактерий к разным антибиотикам. На поверхность чашки Петри, на которой растут бактерии, положе … Википедия

Тетрациклины - Базовая химическая структура тетрациклинов Тетрациклины#160;(англ.#160;tetracyclines) группа антибиотиков, относящихся к классу поликетидов, близких по химическому строению и биологическим свойства … Википедия

Флемоклав Солютаб - Действующее вещество ›› Амоксициллин* + Клавулановая кислота* (Amoxicillin* + Clavulanic acid*) Латинское название Flemoсlav Solutab АТХ: ›› J01CR02 Амоксициллин в комбинации с ингибиторами ферментов Фармакологическая группа: Пенициллины в … Словарь медицинских препаратов

Серебро - У этого термина существуют и другие значения, см. Серебро (значения). 47 Палладий ← Серебро → Кадмий … Википедия

Хвоя - Еловая ветка с хвоей и молодыми шишками Хвоя листоподобные органы многих голосеменных (хвойных) растений сосны, ели, туи и др. Ювенильная хвоя чащ … Википедия

Медицинский колледж

Рассмотрено и одобрено на заседании ЦМК Протокол №__ «__»_________2015г. Председатель ЦМК ___________Е.Левковская

Экзаменационный билет № 6 Экзамен промежуточный ОП 07. «Фармакология» по специальности: 34.02.01 «Сестринское дело» СПО базовой подготовки

УТВЕРЖДАЮ Директор медицинского колледжа __________Малетин О.В. «__»____________ 2015 г.

1. Антибиотики, особенности терапии, понятие резистентность, бактерицидный и бактериостатический эффект. Основные группы антибиотиков.

2. Классификация гипотензивных средств. Механизмы и локализация действия гипотензивных средств разных групп (нейротропного, миотропного действия и влияющих на водно-солевой баланс).

3. Выпишите рецепт: 5 таблеток Варфарина по 0,025г.

4. Назовите средство для купирования приступа стенокардии.

5. Женщина, 23 лет, доставлена в родильный дом в связи с начавшейся родовой деятельностью. У роженицы отмечаются редкие кратковременные сокращения матки. Диагностирована слабость родовой деятельности. Какой гормональный препарат мог бы быть включен в медикаментозные схемы стимуляции родовой деятельности?

1. Антибиотики особенности терапии, понятие резистентность, бактерицидный и бактериостатический эффект

Антибиотики – вещества преимущественно микробного происхождения, их полусинтетические или синтетические аналоги подавляющие жизнедеятельность чувствительных к ним микроорганизмов.

§ Антибиотики назначают на основании посева и определения чувствительности к антибиотикам.

§ Курс терапии должен длиться в среднем 5-7 дней.

§ В комплексе с антибиотиками нужно назначать препараты для нормализации микрофлоры кишечника, противоаллергические препараты и витамины.

Резистентность - сопротивляемость (устойчивость, невосприимчивость) организма к воздействию различных факторов. Бактерицидный эффект – это эффект направленный на уничтожение бактерий. Антибиотики, обладающие бактерицидным действием: пенициллины цефалоспорины карбапенемы, монобактамы, аминогликозиды.

Бактериостатический эффект – это эффект направленный на остановку размножения бактерий в организме. Антибиотики обладающие бактериостатическим действием: макролиды, тетрациклины, левомицетины.

2. Антигипертензивные (гипотензивные) препараты снижают системное артериальное давление. Действие средств направлено на уменьшение работы сердца, уменьшение тонуса артериальных сосудов, объема циркулирующей крови. Ограничение приёма НАТРИЯ ХЛОРИДА с пищей снижает АД поэтому для лечения гипертонической болезни рекомендуют бессолевую диету.

1. Средства, уменьшающие стимулирующее влияние адренергической иннервации на сердечно-сосудистую систему (нейротропные средства):

Бета-адреноблокаторы Метопролол, Бисопролол.

Альфа-адреноблокаторы: Празозин, Тропафен, Тамсулозин.

Симпатолитики: Резерпин, Октадин, Орнид.

Ганглиоблокаторы: Пентамин, Пахикарпин.

2. Средства, влияющие на ренин-ангиотензивную систему

Ингибиторы АПФ: Каптоприл, Эналаприл.

Блокаторы ангиотензиновых рецепторов: Лозартан и Валсартан.

3. Сосудорасширяющие препараты прямого миотропного действия

Вазодилятаторы Папаверин, Дибазол.

4. Средства, влияющие на водно-солевой обмен (диуретики)

Петлевые: Фуросемид, Торасемид.

Тиазидные Индапамид, Гипотиазид.

5. Антагонисты кальция: Нифедепин, Амлодипин.

6. Стимуляторы имидазолиновых рецепторов Моксонидин.

7. Альфа 2адреномиметики центрального типа действия Клофелин оказывает седативное, снотворное действие.

3. Варфарин – антикоагулянт непрямого типа действия

Бактериостатическое действие антибиотиков это

Бактериостатические антибиотики

Тетрациклины делятся на биосинтетические и полусистетические.

Биосинтетические тетрациклины представляют собой продукт жизнедеятельности лучистых грибов. В основе их структуры лежит конденсированная четырехциклическая тетрациклиновая система.

Тетрациклины действуют бактериостатически: угнетают биосинтез белков микробной клетки в рибосомах. Наиболее активны в отношении размножающихся бактерий. Обладают широким спектром действия, который распространяется на грамположительные и грамотрицательные кокки и палочки. Тетрациклины эффективны против стафиллококков, стрептококков, пневмококков и актиномицетов, а также против спирохет, риккетсий, хламидий и простейших. На протея, синегнойную палочку, микобактерии, вирусы и грибы не действуют.

Тетрациклины являются средствами выбора при тяжелых инфекциях: бруцеллез, холера, чума, сыпной и брюшной тиф. Эффективны при пневмонии, вызванной микоплазмами, хламидийных инфекциях, гонорее, сифилисе, лептоспирозах, амебной дизентерии, риккетсиозах и др.

Тетрациклины хорошо проникают через многие тканевые барьеры, в том числе через плацентарный. Определенные количества проходят через гематоэнцефалический барьер. Выделяются тетрациклины с мочой и желчью, часть их подвергается обратному всасыванию из кишечника.

Тетрациклины образуют труднорастворимые невсасывающиеся комплексы с ионами металлов, при этом снижается их противомикробная активность. Поэтому не следует одновременно принимать внутрь тетрациклины с молочными продуктами, антацидными средствами, лекарственными средствами железа и другими металлами.

Тетрациклины нередко вызывают нежелательные побочные эффекты и осложнения:

Раздражающее действие при приеме ЛС внутрь является одной из основных причин диспептических явлений (тошноты, рвоты, поноса), глоссита, стоматита и других нарушений в слизистой пищеварительного канала;

Оказывают токсическое действие на печень, почки, систему крови;

Способны вызывать фотосенсибилизацию и связанные с ней дерматиты;

Депонируются в тканях, богатых кальцием (костной, эмали зубов, связываются с ионами кальция, при этом нарушается структура скелета, происходит окрашивание (в желтый цвет) и повреждение зубов;

Угнетают кишечную микрофлору и способствуют развитию кандидомикоза, суперинфекции (стафиллококковый энтерит). Для предупреждения и лечения кандидомикоза тетрациклины сочетают с противогрибковым антибиотиком нистатином.

Противопоказано применение тетрациклинов беременным и кормящим женщинам, детям в возрасте до 12 лет. С осторожностью назначают при нарушениях функции печени и почек, лейкопении, заболеваниях ЖКТ.

Биосинтетические тетрациклины. Тетрациклина гидрохлорид является антибиотиком короткого действия – 6-8 часов. Назначается внутрь в таблетках, покрытых оболочкой.Мазь тетрациклиновую глазную используют для лечения местных процессов – трахомы, блефаритов, бактериальных конъюнктивитов.

Полусинтетические тетрациклины. Доксициклина гидрохлорид (медомицин, тардокс) хорошо всасывается из ЖКТ, медленно выводится из организма, поэтому назначают в меньшей суточной дозе, 1-2 раза в сутки.

Выпускается ЛС Юнидокс солютаб в виде быстрорастворимых таблеток. В состав препарата входит доксициклин в виде моногидрата, поэтому он реже вызывает нежелательные эффекты, особенно со стороны ЖКТ, и его можно применять с 8 лет.

Существует четыре стереоизомера природного хлорамфеникола, из которых активным в отношении микроорганизмов является только левовращающий, получивший название левомицетин.

Механизм антимикробного действия левомицетина связан с нарушением синтеза белка микроорганизмов (бактериостатическое действие).

Хлорамфеникол (левомицетин) имеет широкий спектр действия. Он охватывает грамположительные и грамотрицательные бактерии и кокки, риккетсии, спирохеты, хламидии. Не активен в отношении анаэробов, синегнойной палочки, простейших, микобактерий, грибков и вирусов. Устойчивость микроорганизмов к нему развивается относительно медленно. Из ЖКТ левомицетин всасывается хорошо. Проникает во все ткани, в том числе проходит через гематоэнцефалический барьер и плаценту. В печени подвергается химическим превращениям и в виде метаболитов выделяется почками.

Основные показания к его применению – брюшной тиф, паратиф, кишечные инфекции, риккетсиозы, бруцеллез и другие инфекции.

В качестве нежелательных побочных эффектов известны:

Выраженное угнетение кроветворения вплоть до апластической анемии с летальным исходом; поэтому применение левомицетина требует регулярного контроля картины крови;

Раздражение слизистых оболочек пищеварительного тракта (тошнота, рвота);

Угнетение нормальной кишечной флоры, дисбактериоз, кандидомикоз;

Аллергические реакции в виде кожных высыпаний, дерматита, лихорадки и др.

Противопоказания: угнетение кроветворения, болезни печени, беременность, детский возраст.

Хлорамфеникол нельзя назначать более 2 недель, одновременно с ЛС, угнетающими кроветворение (сульфаниламиды, пирозолоны и др.)

Левомицетин (хлорамфеникол) получают из культуральной жидкости и синтетическим путем. Обладает очень горьким вкусом, что затрудняет его применение внутрь в таблетках.

Местно используют Синтомицин – синтетический рацемат левомицетина в виде линиментов, суппозиториев. Левомицетин выпускается в глазных каплях, входит в состав комбинированных мазей «Ируксол», «Левомеколь», «Меколь боримед» для лечения ран, ожогов, вагинальных суппозиториев «Левометрин», ушных капель «Отидеп».

Аминогликозиды в своей структуре содержат аминосахара, связанные с агликоном, т.е. имеют гликозидную структуру. Они обладают бактериостатическим и бактерицидным типом действия в зависимости от дозы, их механизм антимикробного действия заключается в нарушении синтеза белков в рибосомах микробной клетки.

Являются антибиотиками широкого спектра действия: эффективны в отношении ряда грамположительных (стафилококки, пневмококки и др.) и грамотрицательных (кишечная палочка, протей, сальмонеллы и др.) микроорганизмов. Высокоактивны в отношении кислотоустойчивых бактерий, в т.ч. микобактерий туберкулеза, синегнойной палочки, простейших. Не влияют на грибки, вирусы, риккетсии, анаэробы. Резистентность возбудителей развивается медленно, но возможна перекрестная устойчивость ко всем ЛС данной группы.

Аминогликозиды при пероральном применении из кишечника не всасываются, поэтому их вводят инъекционно. Могут назначаться местно при заболеваниях кожи и глаз. Плохо проникают в клетки и эффективны лишь при внеклеточном расположении возбудителей. Выводятся почками, создавая в моче высокие концентрации.

Аминогликозиды относятся к токсичным антибиотикам. Основными специфическими нежелательными эффектами являются повреждение слуховых нервов (ототоксическое действие вплоть до глухоты) и поражение почек (нефротоксическое действие). Выраженность этих нежелательных эффектов зависит от дозы. Аминогликозиды могут нарушать нервно-мышечную проводимость, что может быть причиной угнетения дыхания. При лечении аминогликозидами необходимо проводить не реже 1 раза в неделю исследование мочи и аудиометрию. Отмечаются также и аллергические реакции.

Аминогликозиды противопоказаны при заболеваниях почек, нарушениях функции печени и слухового нерва. Их нельзя назначать вместе с диуретиками.

В зависимости от времени открытия, спектра действия и других характеристик выделяется три поколения аминогликозидов.

А м и н о г л и к о з и д ы 1-го п о к о л е н и я более эффективны в отношении микобактерий туберкулеза, возбудителей кишечных инфекций.

Стрептомицина сульфат – продукт жизнедеятельности лучистых грибов. Имеет широкий спектр противомикробного действия. Применяют главным образом при лечении туберкулеза, редко - чумы, туляремии, инфекций мочевыводящих путей, органов дыхания. Вводят лекарственное средство чаще всего в мышцу 1-2 раза в сутки, а также в полости тела.

Канамицина сульфат по свойствам близок к стрептомицину, но является более токсичным. Назначают 2 раза в сутки в мышцу.

Неомицина сульфат в отличие от стрептомицина и канамицина неактивен в отношении микобактерий туберкулеза. Более токсичен. Парентерально не используется. Его применяют местно в виде мази для лечения инфицированных ран, ожогов. Входит в состав комбинированной мази «Неодекс», «Банеоцин», «Неодерм», вагинальных таблеток «Тержинан», «Сикожинакс» и др.

А м и н о г л и к о з и д ы 2-го п о к о л е н и я обладают наибольшей активностью в отношении синегнойной палочки, протея, кишечной палочки и некоторых стафилококков.

Гентамицина сульфат оказывает бактерицидное действие на грамотрицательные микроорганизмы. Применяется при инфекциях мочевыводящих путей, сепсисе, раневых инфекциях, ожогах и др. Назначается 2 раза в сутки. Применяется в инъекциях, глазных каплях, гидрогелевых пластинах. Входит в состав комбинированных глазных капель «Гентадекс».

Тобрамицина сульфат высокоактивен в отношении синегнойной палочки. Показания к применению аналогичны гентамицину. Выпускаются глазные капли Тобрекс, Тобром, входит в состав комбинированных глазных капель «Тобрадекс», «Дексатобром» с глюкокортикоидами.

А м и н о г л и к о з и д ы 3-го п о к о л е н и я обладают более широким спектром противомикробного действия, включая аэробные грамотрицательные бактерии (синегнойная палочка, протей, кишечная палочка и др.), и микобактерии туберкулеза. На большинство грамположительных анаэробных бактерий не влияют.

Амикацина сульфат является полусинтетическим производным канамицина. Является высокоактивным ЛС. Назначают при бактериальных инфекциях тяжелого течения: перитонит, сепсис, менингит, остеомиелит, пневмония, абсцесс легкого, туберкулез, гнойные инфекции кожи и мягких тканей и др. Кратность введения инъекций - 2 раза в сутки.

Фрамицетин (фраминазин, изофра) обладает бактерицидным действием. Активен в отношении грамположительных и грамотрицательных бактерий, вызывающих инфекции верхних дыхательных путей. Выпускается в виде спрея для носа.

Макролиды и азалиды

В эту группу объединяются антибиотики, в структуру которых входит макроциклическое лактонное кольцо. Биосинтетические макролиды являются продуктом жизнедеятельности лучистых грибов, в последнее время получены также полусинтетические ЛС. Механизм антимикробного действия макролидов связан с торможением синтеза белков микробной клетки.

По спектру противомикробного действия макролиды напоминают бензилпенициллины: активны в основном в отношении грамположительных микроорганизмов. В отличие от пенициллинов макролиды активны в отношении риккетсий, хламидий, анаэробов и др. К макролидам чувствительны те микроорганизмы, которые выработали устойчивость к пенициллинам, цефалоспоринам, тетрациклинам. Их используют в качестве антибиотиков резерва при непереносимости пенициллинов, особенно при инфекциях, вызванных стрептококками, пневмококками и клостридиями.

Достаточно всасываются при назначении через рот, хорошо проникает во все ткани. Через гематоэнцефалический барьер и плаценту не проходят. Выделяются с желчью, частично с мочой.

Применяют для лечения пневмонии, тонзиллитов, ангины, скарлатины, дифтерии, коклюша, рожистого воспаления, трофических язв, инфекций мочевых и желчевыводящих путей и др. Имеются детские лекарственные формы.

Макролиды являются достаточно безопасными антимикробными средствами. Нежелательные побочные явления наблюдаются относительно редко: диарея, аллергические реакции, поражения печени при длительном применении. Противопоказаны при повышенной индивидуальной чувствительности, заболеваниях печени.

Биосинтетические макролиды. Эритромицин является активным антибиотиком. Назначают его внутрь и местно для лечения ожогов, пролежней в мазях и растворах. В кислой среде желудка эритромицин частично разрушается, поэтому его следует применять в капсулах или таблетках, покрытых оболочкой, обеспечивающей освобождение ЛС только в тонком кишечнике. Интервал приема - 6 часов. Входит в состав суспензии для лечения угревой сыпи «Зинерит».

Мидекамицин (макропен, фармапен) – природный макролид второго поколения. Обладает широким спектром действия. Назначают 3 раза в сутки.

Спирамицин (дорамицин, ровамицин) применяют при инфекциионно-воспалительных заболеваниях ЛОР-органов, дыхательных путей, гинекологических заболеваниях 2-3 раза в сутки.

Джозамицин (вильпрафен) применяется при пневмонии, тонзиллите, инфекциях кожи и мягких тканей 2 раза в сутки.

Полусинтетические макролиды.Обладают более широким спектром действия. Эффективны в лечении инфекций, передающихся половым путем, стафилококковых инфекций кожи и мягких тканей, инфекционных заболеваниях ЖКТ, вызванных атипичными бактериями – хламидии, легионеллы, микоплазмы. Проявляют противовоспалительный эффект.

Рокситромицин (рулид, рулокс, рулицин), являются эффективным полусинтетическими макролидами. Быстро всасываются при приеме внутрь, накапливаются в тканях дыхательных путей, почек, печени. Назначают при инфекциях дыхательных путей, кожи, мягких тканей, инфекциях мочеполовой системы 2 раза в сутки.

Кларитромицин (клацид, кларбакт, фромилид, кларилид) в 2-4 раза активнее эритромицина в отношении стафилококков и стрептококков. Эффективен в отношении Helicobacter pylori. Хорошо всасываются из ЖКТ, выделяется почками. Назначают 2 раза в сутки при инфекциях дыхательных путей, кожи, мягких тканей, язвенной болезни желудка и др.

Азитромицин (сумамед, сумалек, азикар, азилид, зиромин, сумамокс) – антибиотик широкого спектра действия. Является первым представителем новой группы макролидных антибиотиков – азалиды. В высоких концентрациях в очаге воспаления оказывает бактерицидное действие. Применяют при инфекциях дыхательных путей, ЛОР-органов, кожи, мягких тканей, гонорее и др. Назначают 1 раз в сутки. Нежелательные эффекты проявляются крайне редко.

Выпускается препарат Зетамакс в виде суспензии замедленного высвобождения, которая после однократного приема действует до 7 суток.

Линкозамиды делятся на биосинтетические и полусинтетические.

Биосинтетические линкозамиды.Линкомицина гидрохлорид (линкоцин) в терапевтических дозах действует на микробную клетку бактериостатически, при более высоких концентрациях может наблюдаться бактерицидный эффект. Подавляет синтез белка в микробной клетке.

Активен в отношении грамположительных микроорганизмов: аэробных кокков (стафилококков, стрептококков, пневмококков), анаэробных бактерий. Устойчивость микроорганизмов к линкомицину развивается медленно. Относится к антибиотикам резерва, назначаемым при инфекциях, вызванных грамположительными микроорганизмами, резистентными к пенициллину и другим антибиотикам.

Хорошо всасывается при назначении через рот, проникает во все ткани, накапливается в костной ткани. Выделяется почками и с желчью.

Применяют при сепсисе, остеомиелите, пневмонии, абсцессе легкого, гнойных и раневых инфекциях, местно – при гнойно-воспалительных заболеваниях в виде мазей, рассасывающихся пленок (Линкоцел, Феранцел).

Нежелательные побочные эффекты: диспептические явления, стоматит, псевдомембранозный колит, нарушения кроветворения; при быстром внутривенном введении – понижение АД, головокружение, слабость.

Противопоказания: нарушение функции почек, печени, беременность.

Полусинтетические линкозамиды. Клиндамицин (климицин, далацин, вагицин) – полусинтетическое производное линкомицина, схожее с ним по спектру противомикробного действия, но более активное – в 2-10 раз. Лучше всасывается из кишечника. Назначается внутрь, парентерально и местно (кремы, гели, вагинальные суппозитории).

Линезолид (зивокс) нарушает синтез белка, связываясь с рибосомами в микробной клетке. Спектр действия: грамположительные микроорганизмы (стафилококки, энтерококки), грамотрицательные микроорганизмы: гемофильная палочка, легионелла, гонококк, анаэробы. Хорошо всасывается из ЖКТ, создает высокие концентрации во многих органах и тканях. Проникает через ГЭБ. Выводится через почки. Применяется инъекционно при пневмониях, инфекциях кожи и мягких тканей.

Нежелательные эффекты: тошнота, рвота, диарея, изменение вкуса, анемия, головная боль.

Рифампицин – полусинтетическое производное рифамицина. Является антибиотиком широкого спектра действия. Оказывает бактериостатическое, а в больших дозах – бактерицидное действие. Высокоактивен в отношении микобактерий туберкулеза, является противотуберкулезным ЛС 1 ряда. Активен в отношении большого числа грамположительных и грамотрицательных бактерий (кокки, палочки сибирской язвы, клостридии, бруцеллы, сальмонеллы, протей и др.) Устойчивость к ЛС развивается быстро.

Основными показаниями к применению ЛС является туберкулез легких и других органов. Возможно применение при инфекциях дыхательных путей, моче- и желчевыводящих путей, остеомиелите, гонорее, менингите.

Нежелательные побочные эффекты: дисфункция печени, аллергические реакции, диспептические явления, почек, лейкопения.

Противопоказания: гепатит, нарушение функции почек, беременность, лактация, детям грудного возраста.

Рифамицин (отофа) активен в отношении большинства микроорганизмов, вызывающих воспалительные заболевания уха. Применяются при отитах в виде капель.

Рифаксимин (альфа нормикс) – антибиотик широкого спектра противомикробной активности, включающим большинство грамположительных и грамотрицательных, аэробных и анаэробных бактерий, вызывающих желудочно-кишечные инфекции. Применяют при инфекциях ЖКТ.

Антибиотики разных групп

Фузидин-натрий является производным фузидиевой кислоты. Антибиотик с узким спектром действия, в основном влияет на грамположительные бактерии: стафилококки, менингококки, гонококки, в отношении пневмококков и стрептококков менее активен. Не влияет на грамотрицательные бактерии, грибы и простейшие. Действует бактериостатически. Хорошо всасывается при энтеральном приеме. Проникает во все ткани, накапливается в костной ткани. Применяется при стафилококковых инфекциях, особенно при остеомиелите.

Нежелательные побочные эффекты: диспептические явления, кожные сыпи, желтуха.

Фузафунгин (биопарокс) антибиотик для местного применения. Обладает широким спектром антибактериального действия. Оказывает противовоспалительное действие. Назначают ингаляционно при заболеванияз верхних дыхательных путей (синусит, фарингит, тонзиллит, ларингит, трахеит).

Фосфомицин (монурал) – производное фосфоновой кислоты. Обладает широким спектром действия и бактерицидным типом действия (подавляет синтез клеточной стенки бактерий). Снижает адгезию ряда бактерий на эпителии мочевыводящих путей. Применяется при инфекциях мочевых путей: цистит, уретрит. Выпускается в гранулах для перорального приема.

1.Рациональная антибиотикотерапия. Побочное действие антибиотиков на организм человека и на микроорганизмы. Формирование антибиотико-резистентных и антибиотикозависимых форм бактерий.

Рациональня а\бтерапия.- направлена на предупреждение резистентных форм, терапевтической концентрации. Минимальная ингибирующая концентрация/или мин подавляющая конц-это мин конц а/б, подавляющая рост бакт. Терминальная конц в 2-4 р больше. Меры борьбы направлены на получение резистентных видов: 1)новые гр или хим модификац а/б 2)нельзя использовать как крнсерванты 3)получ а/б, которые подавляют адгезию и ферменты бактериальной клетки 4)прицельная а/б терапия-определяет чувствительность штамма к а/б и лечат тем, к которые наиболее чувствительны 5)нельзя использовать в медецине-в ветеринарии 6)запрещается для профилактики.

Побочное действие антибиотиков.

Формирование атипичных форм микробов;

Формирование антибиотикорезистентных и антибиотикозависимых форм микроорганизмов.

2.Реакция преципитации и ее разновидности. Механизм и методы постановки, практическое применение.

Реакция преципитации и ее варианты. Сущность данной реак­ции состоит в осождение (прециnитации) антигена, находящегося в дисперсном коллоидном состоянии, воздействием специфических антител в растворе электролита. Механизмы реакций агглютинации и преципитации аналогичны и описываются теорией «решетки».

Реакция преципитации является высокочувствительным тестом, так как позволяет обнаружить малые количества антигена или гапте­на. Высокая чувствительность реакции преципитации позволяет ис­пользовать ее для выявления антигенов с помощью известных анти-сывороток. В одном из вариантов последовательные разведения ан­тигена наслаивают на стандартное разведение диагностической сыворотки в пробирках, при этом осадок образуется в виде кольца на границе двух сред (кольцепреципитация). Реакцию оценивают по мак­симальному разведению антигена, при котором наблюдается кольцо преципитации визуально. Кроме того, помутнение может быть зафиксировано инструментальными методами - нефелометрией и др. Реакция преципитации применяется в лабораторной практике при диагностике инфекционных заболеваний, а также в судебной медицин­ской экспертизе для определения видовой принадлежности белков, в частности белков кровяных пятен, спермы, помощью этой ре­акции в санитарной практике определяют фальсификацию рыбных и мясных изделий. В биологии реакция преци­питации используется становления сте­пени ил филогенетического родства различных видов животных и растений.

Иммунодиффузия. взаимодействие антигена с антителами происходит не жидкости, а в геле

ИММ ноэлектрофорез (ИЭФ) представляет собой электрофореза в геле с иммунодифузией.

Иммуноблотиг - один из современных высокоточных вариантов электрофореза- с анализом разделенных белков иммунологическим методом.

Реакция Кумбса (антиглобулиновый тест.). Неполные антитела в отличие от нормальных моновалентны, поскольку они имеют один активный центр, способный взаимодействовать только с одним эпи­топом: в то время как другие эпитопы остаются не связанными. В ре­зультате этого не происходит образования крупных комплексов, вы­падающих в осадок в растворе электролита. Последние проявляются только в реакциях с бивалентными антителами. Для исправления это­го положения вводится антиглобулиновая сыворотка (АГС), содержа­щая бивалентные антитела к глобулину, которая свяжет между собой моновалентные антитела, содержащиеся в исследуемом материале Таким образом про изойдет визуально видимая реакция гемагглюти­нации или агглютинация, свидетельствующая о наличии в исследуе­мой сыворотке неполных (моно валентных) антител. Например, в слу­чае беременности резус-отрицательной женщины резус-положитель-

плодом у нее в сыворотке крови появятся неполные антитела. Для их выявления в пробирку с исследуемой сывороткой крови вно­сят резус-положительные эритроциты, а затем АГС. Появление ге­магглютинации свидетельствует о положительной реакции.

3.Стафилококки,классификация,характиристика биологических свойств. Токсины, ферменты патогенности. Заболевания вызванные стафилококками. Патогенез, эпидемиология, роль стафилококков в госпитальных инфекциях. Методы микробиологической диагностики стафилококковой инфекции, специфическая профилактика и терапия.

Род стафилококки. к сем. микрококкоцеа. образуют капсулу. Элективная среда-молочно-солевой агар. Колонии гладкие, блестящие, без запаха, приподняты над агаром. Диф-диагн.ср.- с добавл. соли. Все Гр+ кокки, расположенные гроздьями. Факультативн анаэробы, на обычных питательных средах образуют пигмент: белый, золотист, лим-желт. хорошо растут на пит ср, содерж Nacl ,расщепляют многие углеводы. Факторы патогености: капсула, лейкоцидин, гемолизин, белок А, энтеротоксин, фибринолизин (растворяет фибрин, ограничивающий местн. восп. очаг), плазмокоагулаза (свертывание плазмы крови), гиалуронидаза (спос-ет распр-ю стаф. в тк. вследствие нарушения прониц-ти) лецитиназа (разруш.лецитин в составе клет.мембр. лейкоцитов), ДНКаза-имеет золотистый 1) ф-р колонизации: ф-т липаза- разр жирн к-ты,способствует накоплению. 2)ф-р инвазии-гиалуронидаза, фибринолизин, плазмокоагулаза 3) факт защиты от фагоцитоза: микрокапсула, пептидогликан, тейхоевые к-ты, белок А 4) антилизоцимная акт-ть 5) факт,поврежд кл и тк: гемотоксин=гемолизин.Стаф энтеротоксиныA,B,C,D,E- накапл в продуктах и вызыв пищ отравлен(пищ токсикоз) 6)ф-р защиты от антимикр препаратов:ф-т беталактамаза.Эпид-я:Обнар-ся на коже и слиз.Резервуаром золот. Стаф. явл-ся здоровые носители и больные.Наиб. опасность предст. бактерионосители и больные с кожными поражениями. Стаф. резистентны к усл. ср.Стаф вызыв всевозм воспал проц: ранев инф,пневмония,бронхиты.пораж почек и мочепол сист и генерализ инф. менингит и сепсис. Имм-т после инф-ии недолг,местн. Диагн: 1) иссл материал(гной) подверг. б/с иссл-ю и высевают на пит. ср.2) б/л:исслед мат-л кровь, мокрота, фекалии. После выделения чист.культ. опред. видов. принадл-ть. Для стаф.aureus-плазмокоагулаза, гемолизин и белокА. Фаготипирование для установления источника инф-ии. Также необходимо определение чувств-ти к ряду а/б. 3)серол прим редко Проф-ка: борьба с источн инф-ии, предупрежд забол в ЛУ. Леч-е: а/б (в-лактамные препараты), цефалоспорины, реже тетрациклины

Антибио́тики (от др.-греч. ἀντί - против + βίος - жизнь) - вещества природного или полусинтетического происхождения, подавляющие рост живых клеток, чаще всего прокариотических или простейших.

По ГОСТ(СТ СЭВ)

Антибиотик - вещество микробного, животного или растительного происхождения, способное подавлять рост микроорганизмов или вызывать их гибель.

Антибиотики природного происхождения чаще всего продуцируются актиномицетами, реже - немицелиальными бактериями.

Некоторые антибиотики оказывают сильное подавляющее действие на рост и размножение бактерий и при этом относительно мало повреждают или вовсе не повреждают клетки макроорганизма, и поэтому применяются в качестве лекарственных средств.

Некоторые антибиотики используются в качестве цитостатических (противоопухолевых) препаратов при лечении онкологических заболеваний.

Антибиотики не воздействуют на вирусы, и поэтому бесполезны при лечении заболеваний, вызываемых вирусами (например, грипп, гепатиты А, В, С, ветряная оспа, герпес, краснуха, корь).

Терминология

Полностью синтетические препараты, не имеющие природных аналогов и оказывающие сходное с антибиотиками подавляющее влияние на рост бактерий, традиционно было принято называть не антибиотиками, а антибактериальными химиопрепаратами. В частности, когда из антибактериальных химиопрепаратов известны были только сульфаниламиды, принято было говорить обо всём классе антибактериальных препаратов как об «антибиотиках и сульфаниламидах». Однако в последние десятилетия в связи с изобретением многих весьма сильных антибактериальных химиопрепаратов, в частности фторхинолонов, приближающихся или превышающих по активности «традиционные» антибиотики, понятие «антибиотик» стало размываться и расширяться и теперь часто употребляется не только по отношению к природным и полусинтетическим соединениям, но и к многим сильным антибактериальным химиопрепаратам.

История

Основная статья: Изобретение антибиотиков

Изобретение антибиотиков можно назвать революцией в медицине. Первыми антибиотиками были пенициллин и стрептомицин.

Классификация

Огромное разнообразие антибиотиков и видов их воздействия на организм человека явилось причиной классифицирования и разделения антибиотиков на группы. По характеру воздействия на бактериальную клетку антибиотики можно разделить на две группы:

  • бактериостатические (бактерии живы, но не в состоянии размножаться),
  • бактерицидные (бактерии погибают, а затем выводятся из организма).

Классификация по химической структуре, которую широко используют в медицинской среде, состоит из следующих групп:

  • Бета-лактамные антибиотики, делящиеся на две подгруппы:
    • Пенициллины - вырабатываются колониями плесневого грибка Penicillinum;
    • Цефалоспорины - обладают схожей структурой с пенициллинами. Используются по отношению к пенициллинустойчивым бактериям.
  • Макролиды - антибиотики со сложной циклической структурой. Действие - бактериостатическое.
  • Левомицетины - Использование ограничено по причине повышенной опасности серьезных осложнений - поражении костного мозга, вырабатывающего клетки крови. Действие - бактериостатическое.
  • Гликопептидные антибиотики нарушают синтез клеточной стенки бактерий. Оказывают бактерицидное действие, однако в отношении энтерококков, некоторых стрептококков и стафилококков действуют бактериостатически.
  • Линкозамиды оказывают бактериостатическое действие, которое обусловлено ингибированием синтеза белка рибосомами. В высоких концентрациях в отношении высокочувствительных микроорганизмов могут проявлять бактерицидный эффект.
  • Антибиотики разных групп - Рифамицин, Ристомицина сульфат, Фузидин-натрий, Полимиксина M сульфат, Полимиксина B сульфат, Грамицидин, Гелиомицин.
  • Противогрибковые препараты - разрушают мембрану клеток грибков и вызывают их гибель. Действие - литическое. Постепенно вытесняются высокоэффективными синтетическими противогрибковыми препаратами.
  • Противолепрозные препараты - Диафенилсульфон, Солюсульфон, Диуцифон.

Бета-лактамные антибиотики

Основная статья: Бета-лактамные антибиотики

Бе́та-лакта́мные антибио́тики (β-лактамные антибиотики, β-лактамы) - группа антибиотиков, которые объединяет наличие в структуре β-лактамного кольца. К бета-лактамам относятся подгруппы пенициллинов, цефалоспоринов, карбапенемов и монобактамов. Сходство химической структуры предопределяет одинаковый механизм действия всех β-лактамов (нарушение синтеза клеточной стенки бактерий), а также перекрёстную аллергию к ним у некоторых пациентов.

Пенициллины

Основная статья: Пенициллины

Пеницилли́ны - антимикробные препараты, относящиеся к классу β-лактамных антибиотиков. Родоначальником пенициллинов является бензилпенициллин (пенициллин G, или просто пенициллин), применяющийся в клинической практике с начала 1940-х годов.

Цефалоспорины

Основная статья: Цефалоспорины

"Це́фалоспори́ны (англ. cephalosporins) - это класс β-лактамных антибиотиков, в основе химической структуры которых лежит 7-аминоцефалоспорановая кислота (7-АЦК). Основными особенностями цефалоспоринов по сравнению с пенициллинами являются их большая резистентность по отношению к β-лактамазам - ферментам, вырабатываемым микроорганизмами. Как оказалось, первые антибиотики - цефалоспорины, имея высокую антибактериальную активность, полной устойчивостью к β-лактамазам не обладают. Будучи резистентными в отношении плазмидных лактамаз, они разрушаются хромосомными лактамазами, которые вырабатываются грамотрицательными бактериями. Для повышения устойчивости цефалоспоринов, расширения спектра антимикробного действия, улучшения фармакокинетических параметров были синтезированы их многочисленные полусинтетические производные.

Карбапенемы

Основная статья: Карбапенемы

Карбапенемы (англ. carbapenems) - класс β-лактамных антибиотиков, с широким спектром действий, имеющие структуру, которая обусловливает их высокую устойчивость к бета-лактамазам. Не устойчивы против нового вида бета-лактамаз NDM1.

Макролиды

Основная статья: Макролиды

Макроли́ды - группа лекарственных средств, большей частью антибиотиков, основой химической структуры которых является макроциклическое 14- или 16-членное лактонное кольцо, к которому присоединены один или несколько углеводных остатков. Макролиды относятся к классу поликетидов, соединениям естественного происхождения. Макролиды относятся к числу наименее токсичных антибиотиков.

Также к макролидам относят:

  • азалиды, представляющие собой 15-членную макроциклическую структуру, получаемую путем включения атома азота в 14-членное лактонное кольцо между 9 и 10 атомами углерода;
  • кетолиды - 14-членные макролиды, у которых к лактонному кольцу при 3 атоме углерода присоединена кетогруппа.

Кроме этого, в группу макролидов номинально входит относящийся к иммунодепрессантам препарат такролимус, химическую структуру которого составляет 23-членное лактонное кольцо.

Тетрациклины

Основная статья: Тетрациклины

Тетрацикли́ны (англ. tetracyclines)- группа антибиотиков, относящихся к классу поликетидов, близких по химическому строению и биологическим свойствам. Представители данного семейства характеризуются общим спектром и механизмом антимикробного действия, полной перекрёстной устойчивостью, близкими фармакологическими характеристиками. Различия касаются некоторых физико-химических свойств, степени антибактериального эффекта, особенностей всасывания, распределения, метаболизма в макроорганизме и переносимости.

Аминогликозиды

Основная статья: Аминогликозиды

Ами́ногликози́ды - группа антибиотиков, общим в химическом строении которых является наличие в молекуле аминосахара, соединённого гликозидной связью с аминоциклическим кольцом. По химическому строению к аминогликозидам близок также спектиномицин, аминоциклитоловый антибиотик. Основное клиническое значение аминогликозидов заключается в их активности в отношении аэробных грамотрицательных бактерий.

Линкозамиды

Основная статья: Линкозамиды

Ли́нкозами́ды (син.: линкосамиды) - группа антибиотиков, в которую входят природный антибиотик линкомицин и его полусинтетический аналог клиндамицин. Обладают бактериостатическими или бактерицидными свойствами в зависимости от концентрации в организме и чувствительности микроорганизмов. Действие обусловлено подавлением в бактериальных клетках синтеза белка путем связывания 30S-субъединицы рибосомальной мембраны. Линкозамиды устойчивы к действию соляной кислоты желудочного сока. После приема внутрь быстро всасываются. Используется при инфекциях, вызванных грамположительными кокками (преимущественно в качестве препаратов второго ряда) и неспорообразующей анаэробной флорой. Их обычно сочетают с антибиотиками, влияющими на грамотрицательную флору (например, аминогликозидами).

Хлорамфеникол

Основная статья: Хлорамфеникол

Хлорамфеникол (левомицетин) - антибиотик широкого спектра действия. Бесцветные кристаллы очень горького вкуса. Хлорамфеникол - первый антибиотик, полученный синтетическим путём. Применяют для лечения брюшного тифа, дизентерии и других заболеваний. Токсичен. Регистрационный номер CAS:. Рацемическая форма - синтомицин.

Гликопептидные антибиотики

Основная статья: Гликопептидные антибиотики

Гликопептидные антибиотики - класс антибиотиков, состоит из гликозилированных циклических или полициклических нерибосомных пептидов. Этот класс антибиотиков ингибирует синтез клеточных стенок у чувствительных микроорганизмов, ингибируя синтез пептидогликанов.

Полимиксины

Основная статья: Полимиксины

Полимикси́ны - группа бактерицидных антибиотиков, обладающих узким спектром активности против грамотрицательной флоры. Основное клиническое значение имеет активность полимиксинов в отношении P. aeruginosa. По химической природе это полиеновые соединения, включающие остатки полипептидов. В обычных дозах препараты этой группы действуют бактериостатически, в высоких концентрациях - оказывают бактерицидное действие. Из препаратов в основном применяются полимиксин В и полимиксин М. Обладают выраженной нефро- и нейротоксичностью.

Сульфаниламидные антибактериальные препараты

Основная статья: Сульфаниламиды

Сульфани́лами́ды (лат. sulfanilamide) - это группа химических веществ, производных пара-аминобензолсульфамида - амида сульфаниловой кислоты (пара-аминобензосульфокислоты). Многие из этих веществ с середины двадцатого века употребляются в качестве антибактериальных препаратов. пара-Аминобензолсульфамид - простейшее соединение класса - также называется белым стрептоцидом и применяется в медицине до сих пор. Несколько более сложный по структуре сульфаниламид пронтозил (красный стрептоцид) был первым препаратом этой группы и вообще первым в мире синтетическим антибактериальным препаратом.

Хинолоны

Основная статья: Хинолоны

Хиноло́ны - группа антибактериальных препаратов, также включающая фторхинолоны. Первые препараты этой группы, прежде всего налидиксовая кислота, в течение многих лет применялись только при инфекциях мочевыводящих путей. Но после получения фторхинолонов стало очевидно, что они могут иметь большое значение и при лечении системных бактериальных инфекций. В последние годы это наиболее динамично развивающаяся группа антибиотиков.

Фто́рхиноло́ны (англ. fluoroquinolones) - группа лекарственных веществ, обладающих выраженной противомикробной активностью, широко применяющихся в медицине в качестве антибиотиков широкого спектра действия. По широте спектра противомикробного действия, активности, и показаниям к применению они действительно близки к антибиотикам, но отличаются от них по химической структуре и происхождению. (Антибиотики являются продуктами природного происхождения либо близкими синтетическими аналогами таковых, в то время, как фторхинолоны не имеют природного аналога). Фторхинолоны подразделяют на препараты первого (пефлоксацин, офлоксацин, ципрофлоксацин, ломефлоксацин, норфлоксацин) и второго поколения (левофлоксацин, спарфлоксацин, моксифлоксацин). Из препаратов группы фторхинолонов ломефлоксацин, офлоксацин, ципрофлоксацин, левофлоксацин, спарфлоксацин и моксифлоксацин входят в Перечень жизненно необходимых и важнейших лекарственных препаратов.

Производные нитрофурана

Основная статья: Нитрофураны

Ни́трофура́ны - группа антибактериальных средств. К нитрофуранам чувствительны грамположительные и грамотрицательные бактерии, а также хламидии и некоторые простейшие (трихомонады, лямблии). Обычно Нитрофураны действуют на микроорганизмы бактериостатически, однако в высоких дозах они могут оказывать бактерицидное действие. К нитрофуранам редко развивается устойчивость микрофлоры.

Противотуберкулёзные препараты

Основная статья: Противотуберкулёзные препараты

Противотуберкулёзные препараты - препараты активные по отношению к палочке Ко́ха (лат. Mycobactérium tuberculósis). Согласно международной анатомо-терапевтическо-химической классификации (рус. АТХ, англ. ATC), имеют код J04A.

По активности противотуберкулезные препараты подразделяют на три группы:

  • наиболее эффективные (изониазид, рифампицин),
  • умеренно эффективные (стрептомицин, канамицин, амикацин, этамбутол, пиразинамид, офлоксацин, ципрофлоксацин, этионамид, протионамид, капреомицин, циклосерин),
  • низко эффективные (ПАСК, тиоацетазон)

Противогрибковые антибиотики

  • Нистатин - противогрибковый препарат полиенового ряда, используется в терапии кандидозов. Впервые выделен из Streptomyces noursei в 1950 году.
  • Амфотерицин B - лекарственное средство, противогрибковый препарат. Полиеновый макроциклический антибиотик с противогрибковой активностью. Продуцируется Streptomyces nodosus. Оказывает фунгицидное или фунгистатическое действие в зависимости от концентрации в биологических жидкостях и от чувствительности возбудителя. Связывается со стеролами (эргостеролами), находящимися в клеточной мембране гриба и встраиваетсмя в мембрану, формируя низкоселективный ионный канал с очень высокой проводимостью. В результате происходит выход внутриклеточных компонентов во внеклеточное пространство и лизис гриба. Активен в отношении Candida spp., Cryptococcus neoformans, Aspergillus spp. и других грибов. Не действует на бактерии, риккетсии, вирусы.
  • Кетоконазол, торговое наименование Низорал (действующее вещество, по ИЮПАК: цис-1-ацетил-4--метокси]фенил]пиперазин) - противогрибковый лекарственный препарат, производное имидазола. Важными особенностями кетоконазола являются его эффективность при приеме внутрь, а также его влияние как на поверхностные, так и на системные микозы. Действие препарата связано с нарушением биосинтеза эргостерина, триглицеридов и фосфолипидов, необходимых для образования клеточной мембраны грибов.
  • Миконазол - препарат для местного лечения большинства грибковых заболеваний, в том числе дерматофитов, дрожжевых и дрожжеподобных, наружных форм кандидоза. Фунгицидный эффект миконазола связан с нарушением синтеза эргостерина - компонента клеточной мембраны гриба.
  • Флуконазол (Fluconazole, 2-(2,4-дифторфенил)-1,3-бис(1Н-1,2,4-триазол-1-ил)-2-пропанол) - распространённый синтетический лекарственный препарат группы триазолов для лечения и профилактики кандидоза и некоторых других микозов. Противогрибковое средство, обладает высокоспецифичным действием, ингибируя активность ферментов грибов, зависимых от цитохрома P450. Блокирует превращение ланостерола клеток грибов в эргостерол; увеличивает проницаемость клеточной мембраны, нарушает ее рост и репликацию. Флуконазол, являясь высокоизбирательным для цитохрома P450 грибов, практически не угнетает эти ферменты в организме человека (в сравнении с итраконазолом, клотримазолом, эконазолом и кетоконазолом в меньшей степени подавляет зависимые от цитохрома P450 окислительные процессы в микросомах печени человека).

Номенклатура

Долгое время не существовало каких-либо единых принципов присвоения антибиотикам названий. Чаще всего их называли по родовому или видовому наименованию продуцента, реже - в соответствии с химическим строением. Некоторые антибиотики названы в соответствии с местностью, откуда был выделен продуцент, а, например, этамицин получил название от номера штамма (8).

В 1965 году Международный комитет по номенклатуре антибиотиков рекомендовал следующие правила:

  1. Если известна химическая структура антибиотика, название следует выбирать с учётом того класса соединений, к которому он относится.
  2. Если структура не известна, название даётся по наименованию рода, семейства или порядка (а если они использованы, то и вида), к которому принадлежит продуцент. Суффикс «мицин» присваивается только антибиотикам, синтезируемым бактериями порядка Actinomycetales.
  3. В названии можно давать указание на спектр или способ действия.

Действие антибиотиков

Антибиотики в отличие от антисептиков обладают антибактериальной активностью не только при наружном применении, но и в биологических средах организма при их системном (перорально, внутримышечно, внутривенно, ректально, вагинально и др.) применении.

Механизмы биологического действия

  • Нарушение синтеза клеточной стенки посредством ингибирования синтеза пептидогликана (пенициллин, цефалоспорин, монобактамы), образования димеров и их переноса к растущим цепям пептидогликана (ванкомицин, флавомицин) или синтеза хитина (никкомицин, туникамицин). Антибиотики, действующие по подобному механизму обладают бактерицидным действием, не убивают покоящиеся клетки и клетки, лишенные клеточной стенки (L-формы бактерий).
  • Нарушение функционирования мембран: нарушение целостности мембраны, образование ионных каналов, связывание ионов в комплексы, растворимые в липидах, и их транспортировка. Подобным образом действуют нистатин, грамицидины, полимиксины.
  • Подавление синтеза нуклеиновых кислот: связывание с ДНК и препятствование продвижению РНК-полимеразы (актидин), сшивание цепей ДНК, что вызывает невозможность её расплетания (рубомицин), ингибирование ферментов.
  • Нарушение синтеза пуринов и пиримидинов (азасерин, саркомицин).
  • Нарушение синтеза белка: ингибирование активации и переноса аминокислот, функций рибосом (стрептомицин, тетрациклин, пуромицин).
  • Ингибирование работы дыхательных ферментов (антимицины, олигомицины, ауровертин).

Взаимодействие с алкоголем

Алкоголь может влиять как на активность, так и на метаболизм антибиотиков, влияя на активность ферментов печени, расщепляющих антибиотики. В частности, некоторые антибиотики, включая метронидазол, тинидазол, левомицетин, ко-тримоксазол, цефамандол, кетоконазол, латамоксеф, цефоперазон, цефменоксим и фуразолидон химически взаимодействуют с алкоголем, что приводит к серьёзным побочным эффектам, включающим тошноту, рвоту, судороги, одышку и даже смерть. Употребление алкоголя с этими антибиотиками категорически противопоказано. Кроме того, концентрация доксициклина и эритромицина может быть, при определённых обстоятельствах, существенно снижена при употреблении алкоголя.

Антибиотикорезистентность

Основная статья: Антибиотикорезистентность

Под антибиотикорезистентностью понимают способность микроорганизма противостоять действию антибиотика.

Антибиотикорезистентность возникает спонтанно вследствие мутаций и под воздействием антибиотика закрепляется в популяции. Сам по себе антибиотик не является причиной появления резистентности.

Механизмы резистентности

  • У микроорганизма может отсутствовать структура на которую действует антибиотик (например бактерии рода микоплазма (лат. Mycoplasma) нечувствительны к пенициллину, так как не имеют клеточной стенки);
  • Микроорганизм непроницаем для антибиотика (большинство грам-отрицательных бактерий невосприимчивы к пенициллину G, поскольку клеточная стенка защищена дополнительной мембраной);
  • Микроорганизм в состоянии переводить антибиотик в неактивную форму (многие стафилококки (лат. Staphylococcus) содержат фермент β-лактамазу, который разрушает β-лактамовое кольцо большинства пенициллинов)
  • Вследствие генных мутаций, обмен веществ микроорганизма может быть изменён таким образом, что блокируемые антибиотиком реакции больше не являются критичными для жизнедеятельности организма;
  • Микроорганизм в состоянии выкачивать антибиотик из клетки [источник не указан 412 дней].

Применение

Антибиотики используются для предотвращения и лечения воспалительных процессов, вызванных бактериальной микрофлорой. По влиянию на бактериальные организмы различают бактерицидные (убивающие бактерий, например, за счёт разрушения их внешней мембраны) и бактериостатические (угнетающие размножение микроорганизма) антибиотики.

Другие области применения

Некоторые антибиотики обладают также дополнительными ценными свойствами, не связанными с их антибактериальной активностью, а имеющими отношение к их влиянию на макроорганизм.

Антибиотики: оригинальные и дженерики

Основная статья: Дженерик

В 2000 году был опубликован обзор, в которой приводятся данные сравнительного анализа качества оригинального антибактериального препарата и 40 его дженериков из 13 разных стран мира. У 28 дженериков количество высвобождающегося при растворении активного вещества было значительно ниже, чем у оригинального, хотя все они имели соответствующую спецификацию. У 24 из 40 препаратов были превышены рекомендованный 3% лимит посторонних примесей и порог содержания (>0,8%) 6,11-ди-О-метил-эритромицина А – соединения, ответственного за возникновение нежелательных реакций.

Изучение фармацевтических свойств дженериков азитромицина, наиболее популярных в России, также показало, что общее количество примесей в копиях в 3,1–5,2 раза превышает таковое в оригинальном препарате «Сумамед» (производитель Teva Pharmaceutical Industries), в том числе неизвестных примесей – в 2–3,4 раза.

Важно, что изменение фармацевтических свойств препарата-дженерика снижает его биодоступность и, следовательно, в конечном итоге приводит к изменению специфической антибактериальной активности, уменьшению концентрации в тканях и ослаблению терапевтического эффекта. Так, в случае с азитромицином одна из копий при кислом значении pH (1,2) в тесте растворимости, моделирующем пик отделения желудочного сока, растворялась лишь на 1/3, а другая – слишком рано, на 10-й минуте, что не позволит препарату полностью всосаться в кишечнике. А один из дженериков азитромицина терял способность к растворению при значении pH 4,5.

Роль антибиотиков в естественных микробиоценозах

Не ясно насколько велика роль антибиотиков в конкурентных отношениях между микроорганизмами в естественных условиях. Зельман Ваксман полагал, что эта роль минимальна, антибиотики не образуются иначе как в чистых культурах на богатых средах. Впоследствии, однако, было обнаружено, что у многих продуцентов активность синтеза антибиотиков возрастает в присутствии других видов или же специфических продуктов их метаболизма. В 1978 Л. М. Полянская на примере гелиомицина S. olivocinereus, обладающего свечением при воздействии УФ излучения, показала возможность синтеза антибиотиков в почвах. Предположительно особенно важны антибиотики в конкуренции за ресурсы среды для медленнорастущих актиномицетов. Было экспериментально показано, что при внесении в почву культур актиномицетов плотность популяции вида актиномицета, подвергающегося действию антагониста, падает быстрее и стабилизируется на более низком уровне, чем другие популяции.

По данным опроса, проведённого в 2011 году Всероссийским центром изучения общественного мнения (ВЦИОМ), 46 % россиян считают, что антибиотики убивают вирусы так же хорошо, как и бактерии.

См. также

  • Антисептики
  • Пробиотики
  • Дисбактериоз
  • Устойчивость к антибиотикам

Примечания

  • Molecular Pharmacology, Vol 11, 166-173, 1975 Antibiotics as Tools for Metabolic Studies XVIII. Inhibition of Sodium- and Potassium-Dependent Adenosine Triphosphatase JOHN B. SUSA, HENRY A. LARDY

Антибиотики - это. Что такое Антибиотики?

образуемые микроорганизмами, высшими растениями или тканями животных организмов вещества, а также полусинтетические и синтетические аналоги этих веществ, избирательно подавляющие развитие микроорганизмов или клеток злокачественных опухолей.

Возникновение учения об А. связано с открытием в 1929 г. английским исследователем Флемингом (A. Fleming) антимикробного действия плесневого грибка Penicillium, активное начало которого было названо пенициллином. В очищенном виде пенициллин был получен в Великобритании в 1940 г. Флори и Чейном (Н.W. Florey, Е.В. Chain) и независимо от них в СССР в 1942 г. З.В. Ермольевой и Т.И. Балезиной. Разработка методов биологического синтеза, выделения и очистки пенициллина, создание его лекарственных форм обеспечили возможность медицинского применения антибиотиков.

Описано более 6 тыс. природных А., многие десятки тысяч полусинтетических производных. Наибольшее практическое значение имеют около 50 антибиотиков, выпускаемых в разнообразных лекарственных формах.

Различают А. узкого спектра антимикробного действия, активные преимущественно в отношении грамположительных (природные или некоторые полусинтетические Пенициллины, Макролиды, фузидин, линкомицин и др.) или грамотрицательных (полимиксины) микроорганизмов; широкого спектра, активные в отношении как грамположительных, так и грамотрицательных микроорганизмов (Тетрациклины, Аминогликозиды, левомицетин, некоторые полусинтетические пенициллины, Цефалоспорины, рифампицин); противотуберкулезные (стрептомицин, канамицин, рифампицин, флоримицин, циклосерин); противогрибковые (нистатин, амфотерицин В, гризеофульвин и др.); действующие на простейших (мономицин); противоопухолевые (актиномицины, антрациклины, блеомицины и др.). Кроме того, получены А., действующие на гельминты (гигромицин В), а также А., обладающие свойствами иммунодепрессантов, например циклоспорин А (см. Иммунокорригирующие средства). По основным механизмам противомикробного действия выделяют А., угнетающие синтез клеточной стенки бактерий (пенициллины, цефалоспорины, А. из группы ванкомицина); нарушающие функции рибосом и процессы синтеза белков в микробных клетках (макролиды, аминогликозиды, тетрациклины, левомицетин, линкомицин); изменяющие проницаемость цитоплазматической мембраны микроорганизмов и обладающие детергентным действием на них (полимиксины, нистатин, леворин, амфотерицин В и др.); нарушающие синтез РНК бактерий (рифампицин). Механизмы действия противоопухолевых А обусловлены главным образом нарушением метаболизма ДНК и РНК опухолевых клеток. По характеру противомикробного действия А. разделяют на бактерицидные (быстро вызывающие гибель микробных клеток) и бактериостатические (задерживающие рост и размножение микробных клеток). Бактерицидным действием обладают в основном А., угнетающие синтез клеточной стенки, нарушающие проницаемость цитоплазматической мембраны микроорганизмов или блокирующие в них синтез РНК. Для подавляющего большинства А., нарушающих внутриклеточный синтез белка и функции рибосом, характерно бактериостатическое действие на микроорганизмы. Исключением являются А. из группы аминогликозидов, которые отличаются тем, что не только нарушают функции рибосом и внутриклеточный синтез белка, но и, вероятно, вторично (непрямым путем) угнетают синтез клеточной стенки микроорганизмов. Избирательность действия А. разных групп неодинакова. Наиболее высокой избирательностью действия отличаются пенициллины и цефалоспорины. т.к. они вмешиваются в процессы синтеза специфических белков клеточной стенки микроорганизмов и не влияют на синтез клеточных мембран макроорганизма, в образовании которых участвуют белковые субстраты, существенно отличающиеся от белков микробных клеток по химическому строению. Низкой избирательностью действия характеризуются противоопухолевые антибиотики, которые влияют на метаболизм ДНК и РНК не только в малигнизированных, но и в нормальных (особенно в быстро пролиферирующих) клетках организма. Этим обусловлена выраженная токсичность противоопухолевых антибиотиков. Эффективность антибиотикотерапии определяется несколькими факторами. Прежде всего следует учитывать спектр противомикробного действия А. Поскольку многие болезни (например, брюшной и сыпной тифы, сифилис, сибирская язва, чума, туберкулез) вызываются определенными видами возбудителей, при таких заболеваниях А. с соответствующими спектрами противомикробного действия назначают обычно сразу после установления клинического диагноза, т.е. до выделения и идентификации возбудителя. При раневых инфекциях, пневмониях, менингитах, инфекции мочевых путей и т.п. выбор А. целесообразно проводить на основе идентификации возбудителя (или ассоциации возбудителей) и изучения антибиотикограммы, что требует значительных затрат времени. Однако при этих болезнях антибиотикотерапию необходимо начинать в возможно более ранние сроки после установления диагноза, поэтому в таких случаях обычно назначают какой-либо А. широкого спектра действия (например, ампициллин, цефалоспорины, канамицин, тетрациклины) или сочетания этих антибиотиков (например, ампициллин с канамицином). В последующем (после выделения возбудителей и изучения их антибиотикограммы) при необходимости проводят соответствующую коррекцию антибиотикотерапии.

Для достижения терапевтического эффекта используют обычно антибиотики с бактериостатическим действием. При тяжелых инфекциях (например, сепсисе, менингококковой инфекции), а также при инфекционных заболеваниях у лиц с ослабленным иммунитетом применяют А. с бактерицидным типом действия.

В процессе антибиотикотерапии важное значение имеет назначение оптимальных доз и способов введения препаратов с учетом их фармакокинетики в организме больного. Оптимальными являются такие дозы А., при которых концентрация А. в крови в 2-3 раза превышает величину его минимальной подавляющей концентрации в отношении выделенного возбудителя. У больных с сопутствующей почечной недостаточностью при выборе А. и определении их доз необходимо принимать во внимание особенности фармакокинетики отдельных препаратов. Так, среди А. имеются препараты (гентамицин, сизомицин, стрептомицин, карбенициллин, цефалоридин, цефалексин и др.), выделение которых значительно уменьшается при почечной недостаточности, что способствует усилению их токсичности при данной патологии. Дозы таких А. уменьшают в соответствии со степенью нарушения выделительной функции почек (по клиренсу креатинина). Коррекцию доз некоторых А. (препаратов бензилпенициллина, ампициллина, оксациллина, линкомицина и цефалотина) проводят только при клиренсе креатинина менее 30 мл/мин. Выделение эритромицина, доксициклина, левомицетина, рифампицина и фузидина из организма при почечной недостаточности не изменяется, поэтому эти А. при нарушениях выделительной функции почек назначают в обычных дозах. При тяжелом течении инфекционных болезней применяют обычно препараты А. для парентерального введения. Для лечения кишечных инфекций (дизентерии, энтеритов и др.) используют препараты А., предназначенные для приема внутрь. При необходимости прибегают к местному введению А., например внутриплеврально при плевритах, в брюшную полость при перитонитах. Эффективность антибиотикотерапии во многом определяется ее оптимальной продолжительностью: лечение А. должно проводиться до стойкого закрепления терапевтического эффекта. Комбинации А. применяют с целью расширения спектра действия и усиления антибактериального эффекта, а также снижения частоты и выраженности побочного действия. Комбинированная антибиотикотерапия показана в основном в следующих случаях: в начале лечения при подозрении на смешанную инфекцию (вызываемую ассоциацией возбудителей) и тяжелом течении заболевания; с целью усиления антибактериального эффекта (например, пенициллин + стрептомицин при септическом эндокардите или заболеваниях дыхательных путей, вызванных гемофильными палочками); для предупреждения или замедления образования резистентных форм при назначении макролидов, фузидина и других А., характеризующихся быстрым развитием устойчивых к их действию возбудителей; с целью снижения лечебных доз А., обладающих токсичностью (например, гентамицин + карбенициллин при лечении синегнойной инфекции). При выборе комбинации следует избегать сочетаний А. с бактерицидным и бактериостатическим типом действия, т.к. бактериостатические А., как правило, значительно ослабляют противомикробный эффект бактерицидно действующих препаратов.

Антибиотикопрофилактику и предупредительную антибиотикотерапию применяют при угрожающей инфекции до развития клинических симптомов заболевания и с целью элиминации возбудителей (например, для предупреждения развития бленнореи у новорожденных, при обширных ранах, при контакте с больным чумой, для предупреждения бактериальных осложнений вирусных инфекций).

Резистентность (устойчивость) микроорганизмов к А. является сложной проблемой, возникающей на всех этапах химиотерапии бактериальных инфекций. Различают природную и приобретенную устойчивость микроорганизмов. Природная устойчивость определяется свойствами самого вида или рода микроорганизмов. Приобретенная устойчивость связана с изменением генома микробной клетки за счет мутаций и отбора устойчивых вариантов под влиянием А. Существует два типа приобретенной устойчивости: путем одноступенчатой мутации (так называемый стрептомициновый тип), когда нарастание устойчивости после контакта с А. возникает быстро, и путем многоступенчатых мутаций (так называемый пенициллиновый тип), когда развитие устойчивости происходит медленно, ступенеобразно. Передаваемая (трансмиссивная) резистентность связана с переносом генов резистентности к А. (иногда одновременно к ряду А. - множественная резистентность) от одного микроорганизма к другому с помощью внехромосомных генетических элементов - плазмид и транспозонов. Биохимические механизмы резистентности микроорганизмов к А. обусловлены инактивацией А. за счет действия специфических ферментов, образуемых устойчивыми микроорганизмами (резистентность к пенициллинам, аминогликозидам), изменением мишени действия А. (к тетрациклинам, макролидам и др.), затруднением транспорта А. через клеточную стенку возбудителя. Побочные явления при антибиотикотерапии могут быть разделены на 3 основные группы: аллергические, токсические и связанные с химиотерапевтическим эффектом А. Аллергические реакции могут возникать при применении большинства А., однако они различаются по характеру, тяжести течения и исходу; их возникновение не зависит от дозы, но они усиливаются при увеличении доз. К опасным для жизни относят Анафилактический шок, отек гортани: к неопасным для жизни - кожный зуд, крапивницу, конъюнктивит, ринит и др. Частота возникновения и тяжесть аллергических реакций при антибиотикотерапии определяются в основном аллергогенными свойствами А. и продуктов их превращения в организме, способами введения препаратов (аллергические реакции чаще возникают при местном и ингаляционном применении А.) и индивидуальной чувствительностью больных. Аллергические реакции наиболее часто наблюдаются при назначении А. из группы пенициллинов, особенно при применении длительно действующих препаратов (бициллинов).

Побочные эффекты токсического характера при антибиотикотерипии связаны со свойствами и механизмом действия А. Их выраженность обусловлена дозой введенного препарата, способом введения, его взаимодействием с другими лекарственными средствами, а также состоянием больного. Рациональное применение А. предусматривает выбор не только наиболее активного, но и наименее токсичного препарата, а также назначение его в дозах, безвредных для организма больного. Особой осторожности требует лечение новорожденных и детей раннего возраста, лиц пожилого возраста (вследствие особенностей процессов экскреции и метаболизма, нарушений водного и электролитного обмена).

Токсические эффекты обусловлены воздействием А. на отдельные органы и ткани. Так, нейротоксические осложнения связаны с поражением слуховых ветвей VIII пары черепных нервов (при использовании мономицина, канамицина, стрептомицина, флоримицина, ристомицина), влиянием на вестибулярный аппарат (при назначении стрептомицина, флоримицина, канамицина, неомицина гентамицина). В отдельных случаях при введении некоторых А. наблюдаются и другие нейротоксические осложнения (поражение зрительного нерва, полиневриты, головные боли, нервно-мышечная блокада). Нефротоксическое действие оказывают А. различных групп: полимиксины, аминогликозиды, цефалоспорины, амфотерицин В, гризеофульвин, ристомицин и др. Нефротоксические реакции чаще возникают у больных с нарушением выделительной функции почек. Для предупреждения нефротоксических реакций необходимо выбирать А., дозы и схемы его применения с учетом клинико-лабораторных данных о состоянии выделительной функции почек, а лечение проводить под постоянным контролем концентрации препарата в моче и крови. Токсическое действие А. на желудочно-кишечный тракт связано с их местнораздражающим влиянием на слизистые оболочки и проявляется тошнотой, рвотой, анорексией, болями в области живота, поносом. Угнетение кроветворения (иногда вплоть до гипо- и апластической анемии) наблюдается при применении левомицетина и амфотерицина В; гемолитическая анемия может возникать при использовании левомицетина. Имеются А., главным образом обладающие противоопухолевой активностью, которые оказывают прямое иммунодепрессивное действие. Наряду с этим некоторые антибактериальные А., например эритромицин, обладают иммуностимулирующим эффектом. Проявления эмбриотоксического действия могут отмечаться при лечении беременных стрептомицином, канамицином, неомицином, тетрациклином. В связи с возможным действием на плод применение токсичных А. в последние 3-6°нед. беременности противопоказано. Побочные явления, связанные с антимикробным эффектом А., выражаются в развитии Дисбактериоза и нарушений формирования специфического иммунитета при антибиотикотерапии бактериальных инфекций (например брюшного тифа).

Частота и выраженность побочных явлений при антибиотикотерапии (на основании анализа статистических данных) не превышает те же показатели при назначении других лекарственных препаратов (а иногда бывает значительно ниже). При соблюдении основных принципов рационального назначения А. удается добиться оптимального эффекта и свести к минимуму побочные явления.

Библиогр.: Ланчини Д. и Паренти Ф. Антибиотики, пер. с англ., М., 1985; Навашин С.М. Современные проблемы антибактериальной терапии, Тер. арх., т. 60, № 8, с. 3, 1988; Навашин С.М. и Фомина И.П. Рациональная антибиотикотерапия, М., 1982; Руководство по инфекционным болезням, под ред. В.И. Покровского и К.М. Лобана, М., 1986.

вещества, продуцируемые микроорганизмами, высшими растениями или тканями животного организма, обладающие способностью избирательно подавлять развитие микроорганизмов или клеток некоторых опухолей.



Понравилась статья? Поделиться с друзьями: