Совокупность вспомогательных клеток нервной ткани человека. Клетки нервной ткани. Клеточный состав нервной ткани

Нервная ткань (textus nervosus) - совокупность клеточных элементов, формирующих органы центральной и периферической нервной системы. Обладая свойством раздражимости, нервная ткань обеспечивает получение, переработку и хранение информации из внешней и внутренней среды, регуляцию и координацию деятельности всех частей организма. В составе нервной ткани имеются две разновидности клеток: нейроны (нейроциты) и глиальные клетки (глиоциты). Первый тип клеток организует сложные рефлекторные системы посредством разнообразных контактов друг с другом и осуществляет генерирование и распространение нервных импульсов. Второй тип клеток выполняет вспомогательные функции, обеспечивая жизнедеятельность нейронов. Нейроны и глиальные клетки образуют глионевральные структурно-функциональные комплексы.

Нервная ткань имеет эктодермальное происхождение. Она развивается из нервной трубки и двух ганглиозных пластинок, которые возникают из дорсальной эктодермы в процессе ее погружения (нейруляция).
Из клеток нервной трубки образуется нервная ткань, формирующая органы ц.н.с. - головной и спинной мозг с их эфферентными нервами, из ганглиозных пластинок - нервная ткань различных частей периферической нервной системы. Клетки нервной трубки и ганглиозной пластинки по мере деления и миграции дифференцируются в двух направлениях: одни из них становятся крупными отростчатыми (нейробласты) и превращаются в нейроциты, другие остаются мелкими (спонгиобласты) и развиваются в глиоциты.

Основу нервной ткани составляют нейроны. Вспомогательные клетки нервной ткани (глиоциты) различают по структурно-функциональным особенностям. В центральной нервной системе имеются следующие виды глиоцитов: эпендимоциты, астроциты, олигодендроциты; в периферической - глиоциты ганглиев, концевые глиоциты и нейролеммоциты (шванновские клетки). Эпендимоциты образуют эпендиму - покровный слой, выстилающий полости мозговых желудочков и центральный канал спинного мозга. Эти клетки имеют отношение к метаболизму и секреции некоторых компонентов цереброспинальной жидкости.

Астроциты входят в состав ткани серого и белого вещества головного и спинного мозга; имеют звездчатую форму, многочисленные отростки, распластанные терминали которых участвуют в создании глиозных мембран.
На поверхности мозга и под эпендимой они формируют наружную и внутреннюю пограничные глиозные мембраны. Вокруг всех кровеносных сосудов, проходящих в мозговой ткани, астроциты образуют периваскулярную глиозную мембрану. Вместе с компонентами самой стенки кровеносного сосуда эта глиозная мембрана создает гематоэнцефалический барьер - структурно-функциональную границу между кровью и нервной тканью.

Олигодендроциты в сером веществе мозга являются клетками-саттелитами нейронов; в белом веществе они образуют оболочки вокруг их аксонов. Клетки периферической глии создают барьеры вокруг нейронов периферической нервной системы. Глиоциты ганглиев (клетки-сателлиты) окружают их перикарион, а нейролеммоциты сопровождают отростки и участвуют в образовании нервных волокон.

Нервные волокна - пути распространения нервного импульса; они формируют белое вещество головного и спинного мозга и периферические нервы. В нервном волокне имеются центральная часть, образоваиная аксоном нервной клетки, и периферическая - оболочечные глиальные клетки, или леммоциты.
В ц.н.с. роль леммоцитов играют олигодендроциты, а в периферической нервной системе - нейролеммоциты. Аксон нервного волокна как часть нервной клетки имеет наружную мембрану (аксолемму) и содержит органеллы: нейрофиламенты, микротрубочки, а также митохондрии, лизосомы, незернистую эндоплазматическую сеть. По аксону от тела нейрона осуществляется аксонный транспорт белков органелл. В аксонном транспорте различают медленный поток (со скоростью около 1 мм в сутки), обеспечивающий рост аксонов, и быстрый поток (около 100 мм в сутки), имеющий отношение к синаптической функции. Транспортные процессы в осевом цилиндре связывают с системой микротрубочек.

В зависимости от способа организации оболочки вокруг аксона различают миелиновые (мякотные) и безмиелиновые (безмякотные) нервные волокна. В последних аксон погружен в цитоплазму леммоцита, поэтому окружен только его двойной цитомембраной. Безмякотные волокна тонкие (0,3-1,5 мкм), характеризуются низкой скоростью проведения импульса (0,5-2,5 м/с).
Такие волокна типичны для вегетативной нервной системы. В миелиновых (мякотных) нервных волокнах цитомембрана леммоцита вследствие многократного закручивания вокруг аксона (миелогенез) образует многослойную структуру из чередующихся билипидных и гликопротеиновых слоев. Этот слоистый, богатый липидами материал называется миелином. Миелиновые нервные волокна различаются по толщине миелиновой оболочки (от 1 до 20 мкм), что влияет на скорость распространения импульса (от 3 до 120 м/с). Миелиновое покрытие по длине волокна имеет сегментарное строение, зависящее от протяженности леммоцита (от 0,2 до 1,5 мкм). На границе двух леммоцитов имеются участки безмиелиновых перетяжек - узлы нервного волокна (перехваты Ранвье). Поэтому распространение импульса в миелиновых волокнах носит сальтаторный (скачкообразный) характер. Миелиновые волокна типичны для соматических нервов, а также проводящих путей головного и спинного мозга. Ведущее значение аксона как части нейрона в структурно-функциональной организации нервного волокна проявляется при его повреждении. Если погибает даже небольшой участок, то нервное волокно гибнет на всем его дальнейшем протяжении, т.к. оказывается отделенным от тела клетки, от которого зависит его существование. Гибель дистального участка аксона сопровождается дегенерацией и распадом его миелиновой оболочки (валлеровское перерождение). При этом макрофаги поглощают распадающийся миелин и остатки аксона, а затем удаляются из очага. Дальнейший процесс восстановления связан с реакцией нейролеммоцитов, которые начинают пролиферировать с проксимального конца поврежденного нервного волокна, образуя трубки. Аксоны врастают в эти трубки со скоростью 1-3 мм в сутки. Этот процесс характерен для периферических нервов после их сдавления и перерезки.

Межнейронная связь осуществляется через их отростки с помощью межклеточных контактов - синапсов.

Нервные волокна оканчиваются не только на нейронах, но и на клетках всех других тканей, особенно мышечных и эпителиальных, образуя эфферентные нервные окончания, или нейроэффекторные синапсы. Особенно многочисленными и сложно развитыми являются двигательные нервные окончания на поперечнополосатой мускулатуре - моторные бляшки.

Воспринимающие (рецепторные) нервные окончания - концевые аппараты дендритов чувствительных нейронов - генерируют нервный импульс под влиянием различных раздражителей из внешней и внутренней среды. По своим структурным особенностям рецепторные нервные окончания могут быть «свободными», т.е. расположенными непосредственно между клетками иннервируемой ткани; «несвободными» и даже инкапсулированными, т.с. окруженными специальными рецепторными клетками эпителиального или глиального характера, а также соединительнотканной капсулой.

Нервная ткань построена исключительно из клеток, межклеточного вещества у нее почти нет. Клетки нервной ткани подразделяются на два типа – нейроны (нейроциты) и глиоциты (нейроглия) . Нейроны способны генерировать и проводить нервные импульсы, тогда как нейроглия обеспечивает вспомогательные функции. Нервная ткань имеет эктодермальное происхождение, достаточно рано обособляясь в эмбриогенезе в виде нервной трубки.

Нейроны представляют собой крупные отростчатые клетки, причем многие из них полиплоидные. Тело нейрона называется перикарионом . Он содержит крупное округлое ядро с мелкодисперсным хроматином и 1-2 ядрышка. В цитоплазме (нейроплазме ) имеются многочисленные митохондрии и пластинчатый комплекс диффузного типа с множеством диктиосом, окружающих ядро. В нейроплазме при специальных методах окрашивания обнаруживаются два вида структур, характерных только для нейронов – тигроид (вещество Ниссля) и нейрофибриллы.

В световом микроскопе тигроид наблюдается в виде базофильных пятен различного размера и плотности, заполняющих перикарион. При использовании электронного микроскопа становится очевидным, что на ультраструктурном уровне тигроид состоит из уплощенных цистерн гранулярной плазматической сети. К цистернам с наружной стороны прикреплены многочисленные рибосомы. Наличие подобных структур в нейроне свидетельствует об интенсивном синтезе белков. Нейрофибриллы выявляются в нейронах после обработки солями серебра. Они образованы промежуточными филаментами (нейрофиламентами) и микротрубочками. Нейрофибриллы в отличие от тигроида находятся не только в перикарионе, но и в отростках. Эти структуры формируют в нейроне мощную систему внутриклеточного транспорта, обеспечивающего перемещение везикул на периферию отростков (антероградный транспорт ) и обратно (ретроградный транспорт ). Специфическим моторным белком в этом транспорте служит аналог динеинакинезин .

Нейроны классифицируют по числу отростков на униполярные, псевдоуниполярные, биполярные и мультиполярные . У человека наиболее часто встречаются биполярные нейроны - клетки с двумя отростками.

Отростки у нейронов бывают двух видов – аксоны и дендриты. Аксон (нейрит ) в нейронах позвоночных всегда один. Он начинается в перикарионе с небольшого расширения, которое называется аксональным холмиком . Его легко отличить от остальной части перикариона по отсутствию тигроида. Аксон не ветвится и может достигать длины до 1,5 м. В цитоплазме аксона имеются многочисленные микротрубочки, канальцы гладкой плазматической сети, митохондрии и мелкие пузырьки. В области аксонального холмика возникает нервный импульс, который движется на периферию аксона. Поэтому аксоны называются двигательными (центробежными, илиэфферентными) отростками. В физическом плане нервный импульс представляет собой волну деполяризации плазмолеммы нейрона (потенциал действия). Дендриты отличаются от аксонов способностью ветвиться, а также наличием боковых выступов – шипиков . Последние представляют собой выступы плазмолеммы дендрита, которые содержат систему плоских цистерн и мембран, ориентированных перпендикулярно поверхности. Шипики участвуют в формировании межнейронных контактов, но, какие при этом они выполняют функции, остается неизвестным. Дендритов в нейроне может быть несколько. Этот вид отростков способен генерировать нервный импульс на периферии и проводить его к перикариону. Поэтому дендриты называются чувствительными (центростремительными, илиафферентными) отростками. Нейроны с помощью аксонов и дендритов связаны в нервной системе в сложные сетевые структуры, которые могут с высокой скоростью обрабатывать большие объемы информации.

В нервной системе встречаются также особые нейроны, которые называются нейросекреторными клетками . Секретируемые ими пептиды синтезируются в перикарионе тигроидом и оформляются пластинчатым комплексом в секреторные гранулы, которые перемещаются по аксону на периферию. Концевые разветвления аксонов нейросекреторных клеток, заканчивающиеся на базальной пластинке капилляров, выделяют эти гормоны в кровь.

У человека нейросекреторные клетки сконцентрированы в гипоталамусе , где их перикарионы образуют супраоптическое и паравентрикулярное ядра. В гипоталамусе происходит секреция либеринов и статинов – пептидных гормонов, которые контролируют аденогипофиз. Аксоны нейросекреторных клеток гипоталамуса направляются в заднюю и промежуточную доли гипофиза, где они выделяют ряд других гормонов.

В отличие от нейронов глиальные клетки нервной ткани не способны генерировать и проводить нервные импульсы. Однако они не менее важны для нормальной работы нервной системы, выполняя такие функции как опорная, изолирующая, разграничительная, трофическая, гомеостатическая, репаративная и защитная.

Нервная ткань состоит из нерв­ных клеток (нейронов) и вспомо­гательных клеток-спутников (глиальных клеток). Нервные клетки – ос­новные структурные и функциональ­ные элементы органов нервной систе­мы. Они способны воспринимать раз­дражения, приходить в состояние возбуждения, вырабатывать и пере­давать нервные импульсы. Глиальные клетки (нейроглия) осуществля­ют опорную и разграничительную функции, обеспечивают существова­ние и специфическую функцию нерв­ных клеток. Нервным клеткам свойст­венна способность синтезировать биологически активные вещества (медиаторы). У некоторых нейронов секреция становится их основной функцией. Нейроны, специализированные для выполнения этой функ­ции, называют нейросекреторными клетками.

Нервные клетки различных отде­лов нервной системы отличаются по размерам и по форме. Например, диаметр тела некоторых клеток моз­жечка равен 4 – 6 мкм, а тело гигант­ских пирамидных клеток коры полу­шарий большого мозга достигает 130 мкм.

В каждой нервной клетке разли­чают тело, отростки и нервные окон­чания. Общим морфологическим признаком всех зрелых нейронов яв­ляется наличие отростков. В зави­симости от места положения и функ­ции нервных клеток длина отростков весьма различна, колеблется от не­скольких микрометров до 1 – 1,5 м.

Существуют два вида отростков: аксон и дендриты. Аксон, или ней­рит, – длинный отросток, который проводит нервные импульсы от тела нервной клетки и передает их на дру­гой нейрон или на клетки рабочего органа – мышцы, железы. Все ней­роны имеют только один аксон. В большинстве случаев дендриты силь­но ветвятся, чем и определяется их название (от греч. dendron – дере­во) . У одного нейрона может быть от 1 до 15 дендритов. Дендриты про­водят нервные импульсы к телу нерв­ной клетки. По количеству отростков нейроны делят на три группы (рис. 42): клет­ки с одним отростком – униполяр­ные нейроны, клетки с двумя отрост­ками – биполярные нейроны и клетки, имеющие три и более отрост­ков, – мультиполярные нейроны.

Рис. 42. Типы нейронов (нерв­ных клеток):

1 – униполярный нейрон, 2 – биполярный нейрон, 3 – ложно-униполярный нейрон, 4 – мультиполярный нейрон

К двуотросчатым нейронам отно­сят также клетки чувствительных узлов, лежащих около спинного и головного мозга (узлов спинномоз­говых и черепных нервов). От тела такой клетки отходит тяж, вырост ее тела, имеющий форму отростка, который делится на дендрит, уходя­щий на периферию, и аксон, идущий в мозг. Такие чувствительные клет­ки, у которых два отростка отходят от выроста тела, называют псевдо­униполярными клетками.

В зависимости от функции нерв­ные клетки делят на рецепторные (чувствительные), эфферентные (вы­носящие) и ассоциативные (вста­вочные) . Рецепторные нейроны вос­принимают раздражения внешней или внутренней среды, участвуют в образовании нервных импульсов и проведении этих импульсов в мозг. Эфферентные нейроны (двигатель­ные, секреторные) проводят нерв­ные импульсы от мозга к исполни­тельным органам (мышцам, желе­зам). Вставочные нейроны осущест­вляют связь между чувствительными и двигательными (секреторными) нейронами, участвуют в формирова­нии нейронных цепей.

Нервная клетка окружена плаз­матической мембраной, которая об­ладает рядом специфических функ­ций: 1) регулирует транспорт ве­ществ, которые связаны с нервной сигнализацией; 2) служит местом электрической активности, лежащей в основе проведения нервного им­пульса; 3) служит местом действия биологически активных веществ (ме­диаторов, пептидов и т. д.); 4) участ­вует в образовании специализи­рованных контактов (синапсов) между нейронами.

В теле нервной клетки содержит­ся ядро. Нейроны человека почти всег­да содержат одно ядро. Форма ядра овальная. Ядрышко крупное. Хрома­тин в ядрах разрыхлен, что связано с его функцией – регулятора актив­ного синтеза белка.

Цитоплазма нервных клеток ха­рактеризуется обилием различных органелл, что связано с их высокой функциональной активностью. В ци­топлазме нейрона находятся мем­бранные и немембранные органеллы.

Для нейрона характерно наличие в цитоплазме специальных органелл: нейрофибрилл и хроматофильного вещества. Нейрофибриллы – это со­вокупность волокнистых структур цитоплазмы, состоящих из нейрофиламентов и микротрубочек. В теле нейрона они образуют густое спле­тение, в отростках нервных клеток ориентируются параллельно длине отростка. Нейрофибриллы выпол­няют в нервных клетках опорные и транспортные функции,

Хроматофильное вещество (зер­нистая эндоплазматическая сеть) локализуется в теле и дендритах нейрона в виде глыбок различной формы и размеров. Значительное развитие зернистой эндоплазматической сети в нейронах связано с высоким уровнем синтеза белков на ее мембранах.

Нервные волокна. От­ростки нервных клеток, покрытые оболочками, называют нервными во­локнами. В зависимости от строе­ния оболочек различают мякотные (миелиновые) и безмякотные (безмиелиновые) нервные волокна. В центре каждого нервного волокна (дендрита, аксона) располагается отросток нервной клетки, получив­ший название осевого цилиндра. В безмякотном нервном волокне со­держится несколько (до 10 – 20) осевых цилиндров, т.е. отростков различных нервных клеток. Мякотное нервное волокно содержит один осевой цилиндр (дендрит или аксон) одной нервной клетки. Осевой ци­линдр нервных волокон состоит из цитоплазмы нервной клетки, содер­жащей продольно ориентированные нейрофиламенты. Снаружи осевой цилиндр покрыт мембраной, обеспечивающей проведение нервного им­пульса. Миелиновые нервные во­локна значительно толще безмякотных. В оболочке миелиновых нерв­ных волокон имеется так называе­мый миелиновый слой, содержащий липиды. Миелиновые нервные во­локна проводят нервные импульсы быстрее (5 – 120 м1с), чем безмя­котные (1 – 2 м1с).

Нервные окончания . Все нервные волокна заканчиваются нервными окончаниями. Различают три вида нервных окончаний: чув­ствительные (рецепторные), двига­тельные, или секреторные, и меж­нейронные (синаптические).

Чувствительные нервные окон­чания (рецепторы) – специализи­рованные концевые образования дендритов чувствительных нейронов. Они имеются во всех органах и тканях тела человека и воспринимают раз­личные воздействия факторов внеш­ней и внутренней среды, преобразуя их в нервные импульсы. Чувстви­тельные окончания подразделяют на свободные нервные окончания и не­свободные нервные окончания. Сво­бодные нервные окончания представ­ляют собой конечные разветвления дендритов чувствительных нейронов. Несвободные чувствительные нерв­ные окончания имеют оболочку. которая образована с участием кле­ток нейроглии. Несвободные нерв­ные окончания, которые имеют соединительнотканную оболочку (капсу­лу), называют инкапсулированными нервными окончаниями, при отсутст­вии капсулы – неинкапсулирован­ными нервными окончаниями.

Эффекторные нервные оконча­ния (эффекторы) располагаются в органах и тканях. При их участии нервный импульс передается тка­ням рабочих органов, вызывая «эф­фект» движения, секреции или дру­гого действия. Среди эффекторов выделяют двигательные и секретор­ные нервные окончания. Двигатель­ные нервные окончания являются концевыми аппаратами аксонов дви­гательных нейронов передних рогов спинного мозга, двигательных ядер черепных нервов и вегетативных ядер. Эти окончания располагаются на мышечных волокнах скелетных мышц, гладкомышечных клетках внутренних органов и сосудов. Сек­реторные нервные окончания нахо­дятся на секреторных клетках желез внешней и внутренней секреции.

Передача нервных импульсов од­ного нейрона на соседние происходит в местах контактов нервных клеток друг с другом. Такие специализиро­ванные соединения получили назва­ния межнейронных контактов – си­напсов (рис. 43).

Рис. 43. Схема межнейронного контакта (синапса): 1 – аксон, 2 – микротрубочки, 3 – митохондрии, 4 – синаптический пузы­рек, 5 – пресинаптическая мембрана, 6 – синаптическая щель, 7 – дендрит, 8 – постсинаптическая мембрана, 9 – рецептор для медиатора

Слово «синапс» (от греч. synapsis – соединение) было использова­но для обозначения места соедине­ния (контакта) нейронов, через ко­торое нервный импульс переходит с одного нейрона на другой, осуществляя функциональную связь нейронов между собой.

Участок нейрона, по которому импульсы поступают в синапс, называют пресинаптическим отделом. В пресинаптическом отделе нахо­дятся пресинаптические пузырьки, заполненные медиатором – хими­ческим веществом, участвующим в передаче нервного импульса. Об­ласть контакта нейрона с преси­наптическим отделом называют постсинаптическим отделом, имеющим постсинаптическую мембрану. Пост­синаптическая мембрана утолще­на и имеет рецепторы для медиа­тора. Между пресинаптической и постсинаптической мембранами на­ходится синаптическая щель.

Синапсы динамически поляризо­ваны. В них передача нервного им­пульса осуществляется только в од­ном направлении: от пресинапти­ческой мембраны к постсинаптичес­кой, от чувствительных нервных окончаний к телу нервной клетки, затем по аксону этой клетки к дендритам или телу другой нервной клетки. Проведение нервных импульсов в таком строго определенном направлении объясняется динамической поляризацией нейронов.

В зависимости от того, какие час­ти нервных клеток вступают в кон­такт друг с другом, различают аксодендритические синапсы (оконча­ние аксона одного нейрона образует контакт с дендритом другого нейро­на), аксосоматические (аксон кон­тактирует с телом другого нейрона) и аксоаксональные (окончание од­ного аксона образует контакт с ак­соном другого нейрона).

Выделяют синапсы с химической передачей нервных импульсов – хи­мические синапсы и синапсы с элект­рической передачей импульсов – электрические синапсы.

Химические синапсы проводят нервные импульсы только в одном направлении. Это самый распрост­раненный вид соединений в нервной системе у человека. Для них харак­терна передача нервного импульса с помощью биологически активных веществ – нейромедиаторов, выде­ляемых пресинаптическим оконча­нием в синаптическую щель.

Различают возбуждающие и тор­мозные нейромедиаторы. Возбуж­дающие нейромедиаторы (ацетилхолин, норадреналин) изменяют проницаемость постсинаптической мембраны, вызывая возникновение возбуждающего потенциала. Тормоз­ные нейромедиаторы (дофамин, гли­цин, гамма-аминомасляная кислота) делают постсинаптическую мембра­ну неспособной генерировать воз­буждения.

Электрические (беспузырьковые) синапсы встречаются крайне редко. В электрических синапсах синаптические пузырьки отсутствуют. Им­пульс в них может передаваться в обоих направлениях.

Таким образом, химические меж­нейронные синапсы обеспечивают передачу нервных сигналов только в одном направлении, что является основой надежности работы нервной системы; постсинаптические нейро­ны, получая сигналы от большого числа нервных клеток, суммируют их и обеспечивают координированный ответ.


Похожая информация.


Функции НС.

1) регулирующая и координирующая , т.е. НС регулирует и координирует работу всех органов и систем организма, поэтому от ее состояния очень многое зависит,

2)интегрирующая - объединяет все органы и системы в единое целое - организм,

3) рефлекторная , т.е. она обеспечивает взаимосвязь организма с внешней средой, реагируя на все раздражения внешней и внутренней сред.

4) обеспечивает психические функции человека (ощущение, восприятие, речь, память, ...)

Отделы НС.

Анатомическое деление НС

Центральная НС Периферическая НС

(спинной, головной мозги) (нервы, нервные волокна, окончания, узлы, сплетения)

Функциональное деление НС

Соматическая НС Вегетативная НС (автономная)

(иннервирует кожу, кости, (иннервирует внутренние органы, железы,

скелетные мышцы) гладкие мышцы)

Симпатическая НС Парасимпатическая НС

(усиливает работу всех (ослабляет деятельность всех

внутренних органов, кроме ЖКТ) органов, кроме ЖКТ)

I. Микроструктура НТ.

Основная ткань в НС - нервная ткань .

Хотя в НС есть и другие ткани, например, оболочки мозга образованы соединительной тканью , а полости мозга выстланы особым видом эпителиальной ткани - эпендимой .

НТ отличается от других тканей тем, что в ней нет межклеточного вещества .

НТ состоит из двух видов клеток:

Клеточная нейроглия Нейроны

(вспомогательные клетки, помогают (главные нервные клетки, за счет которых

нейронам осуществлять их функции) осуществляются все функции ЦНС)

Структурной функциональной единицей НС являетсянейрон .

Каждый нейрон имеет:

· Сома (тело), в которой расположены ядро и большая часть органоидов,

· Отростки , отходящие от сомы, бывают сильно ветвящимися - дендриты , и мало ветвящимися -аксоны .

У аксона имеется боковое ответвление , которое называетсяколлатераль , и на конце есть окончательные ответвления - терминаль .

По дендритам возбуждение направляется к соме нейрона, а от сомы по аксону .

Место отхождения аксона от сомы называетсяаксональным холмиком .

Чаще всего дендриты - это короткие отростки , хотя у чувствительных нейронов они могут быть длинными. Тж и аксоны чаще всего длинные , но могут быть и короткими (в ЦНС).

По отношению к отросткам, сомы выполняют трофическую функцию , регулируя обмен в-в.

Как и в любой клетке, в нервной выделяют следующие части:

· Оболочка - нейролемма,

· Ядро ,

· Цитоплазма , в которой расположены органоиды.

В нейронах есть органоиды общего и специального назначения.

К органоидам общего назначения относят:

· ЭПС (гладкая и шероховатая) - этот система трубочек и канальцев, пронизывающая всю цитоплазму.

Кроме того, на мембранах гладкой ЭПС синтезируются У, Ж, на мембране шероховатой ЭПС - Б.

При специальном окрашивании шероховатой ЭПС видна под световым микроскопом в виде глыбок синего цвета и называетсятигроид (вещество Ниссля) .

· Аппарат Гольджи - это система цистерн и мембранных мешочков, расположенных вокруг ядра и тесно связанных с ЭПС.

В него поступают синтезированные вещества в ЭПС - БЖУ, там они дозревают и окружаются мембраной. Таким образом в аппарате Гольджи образуются и отделяются лизосомы.

· Лизосомы - большинство выполняют роль пищеварительных вакуолей, тк в них содержатся секреты, расщепляющие питательные вещества, т.е. ферменты, или расщепляют остатки отмерших органоидов.

· МТХ - энергостанции клетки. МТХ в нейронах очень много, тк клетка нейрона очень активная, притом МТХ есть не только в соме, но и в отростках.

· Рибосомы - собирают белки из аминокислот.

Однако в нейроненет клеточного центра , тк нейрон - неделящаяся клетка .

Органоиды специального назначения:

· Микрофиламенты (микронити) - органоиды из Б, представляет собой внутренний скелет нейрона и расположен в основном в соме.

· Микротрубочки - органоиды из Б, тянутся из сомы в отростки, в частности доходят до конца аксона.

По ним распространяются биологически активные вещества, в частности медиаторы.

После специальной окраски солями серебра или других тяжелы металлов микротрубочки и микрофиламенты склеиваются между собой, образуя нити - нейрофибриллы , которые видны под светом микроскопа в соме и в отростках.

· Ядро - это основной компартмент любой клетки, в которой хранится наследственная информация в виде ДНК.

Ядро - главный распорядитель всех процессов жизнедеятельности клетки. При разрушении ядра клетка погибает.

· Нейролемма (мемьрана нейрона) - согласно мозаичной модели, состоит из бислоя липидов и белков поверхностных, встроенных в бислой и пронизывающих бислой.

Выполняет много важнейших функций:

Защитная

Обеспечивает избирательную проницаемость веществ в клетку и из нее

Рецепторная

Обменная

Выделительная

Участвует в проведении возбуждения

Существует несколько классификаций нейронов, основанных на разных признаках:

1. По форме сомы :

· Зернистая

· Звездчатая

· Грушевидная

· Веретенообразная

· Треугольная

· Пирамидальная

2. По количеству отростков :

· Униполярные

· Псевдоуниполярные

· Биполярные

· Мультиполярные

3. По функциям :

· Чувствительные (аффирентные, центростремительные, сенсорные) - несут импульсы от рецепторов в ЦНС, являются псевдоуниполярными, их сомы расположены за пределами ЦНС и по форме являются зернистыми, образуют чувствительные ганглии (спинномозговые и черепномозговые),

· Вставочные (центральные, интернейроны, промежуточные) - расположены в ЦНС, получают и обрабатывают информацию с перифирии, хранят в памяти, формируют программу ответной реакции, осуществляют связь между чувствительными и двигательными нейронами, в основном это мультиполярные нейроны разной форме, кроме зернистой, составляют основную массу мозга,

· Двигательные (мотойнероны, эффирентные, центробежные) - несут информацию с ЦНС к рабочему органу (мышцам и железам).

4. По эффекту , оказываемому на другие нейроны:

· Возбуждающие, которые активируют другие нейроны,

· Тормозные, которые угнетают деятельность других нейронов.

II. Нейроглия

Нейроглия (нервный клей) является аналогом межклеточного вещества других тканей. Она была открыта в 1846 г. Рудольфом Вирховым.

В отличие от нейронов, клетки нейроглии делятся в течение всей жизни человека.

Нервная ткань — основной структурный элемент нервной системы. В состав нервной ткани входят высокоспециализированные нервные клетки — нейроны , и клетки нейроглии , выполняющие опорную, секреторную и защитную функции.

Нейрон — это основная структурно-функциональная единица нервной ткани. Эти клетки способны принимать, обрабатывать, кодировать, передавать и хранить информацию, устанавливать контакты с другими клетками. Уникальными особенностями нейрона являются способность генерировать биоэлектрические разряды (импульсы) и передавать информацию по отросткам с одной клетки на другую с помощью специализированных окончаний — .

Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков — нейромедиаторов: ацетилхолина, катехоламинов и др.

Число нейронов мозга приближается к 10 11 . На одном нейроне может быть до 10 000 синапсов. Если эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 10 19 ед. информации, т.е. способна вместить практически все знания, накопленные человечеством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из всю информацию, которая в нем хранится.

Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, регулирующие единую функцию, образуют так называемые группы, ансамбли, колонки, ядра.

Нейроны различаются по строению и функции.

По строению (в зависимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные ) нейроны, несущие возбуждение от рецепторов в , эфферентные , двигательные , мотонейроны (или центробежные), передающие возбуждение из ЦНС к иннервируемому органу, и вставочные , контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные нейроны.

Афферентные нейроны относятся к униполярным, их тела лежат в спинномозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в ЦНС и выполняет функцию аксона, а другая подходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относятся к мультиполярным (рис. 1). Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, а также находятся и во всех других отделах ЦНС. Они могут быть и биполярными, например нейроны сетчатки, имеющие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Рис. 1. Строение нервной клетки:

1 — микротрубочки; 2 — длинный отросток нервной клетки (аксон); 3 — эндоплазматический ретикулум; 4 — ядро; 5 — нейроплазма; 6 — дендриты; 7 — митохондрии; 8 — ядрышко; 9 — миелиновая оболочка; 10 — перехват Ранвье; 11 — окончание аксона

Нейроглия

Нейроглия , или глия , — совокупность клеточных элементов нервной ткани, образованная специализированными клетками различной формы.

Она обнаружена Р. Вирховым и названа им нейроглией, что обозначает «нервный клей». Клетки нейроглии заполняют пространство между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3-4 раза меньше нервных клеток; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Установлено, что нейроглия имеет отношение к обмену веществ в нервной ткани. Некоторые клетки нейроглии выделяют вещества, влияющие на состояние возбудимости нейронов. Отмечено, что при различных психических состояниях изменяется секреция этих клеток. С функциональным состоянием нейроглии связывают длительные следовые процессы в ЦНС.

Виды глиальных клеток

По характеру строения глиальных клеток и их расположению в ЦНС выделяют:

  • астроциты (астроглия);
  • олигодендроциты (олигодендроглия);
  • микроглиальные клетки (микроглия);
  • шванновские клетки.

Глиальные клетки выполняют опорную и защитную функции для нейронов. Они входят в структуру . Астроциты являются самыми многочисленными глиальными клетками, заполняющими пространства между нейронами и покрывающими . Они предотвращают распространение в ЦНС нейромедиаторов, диффундирующих из синаптической щели. В астроцитов имеются рецепторы к нейромедиаторам, активация которых может вызывать колебания мембранной разности потенциалов и изменения метаболизма астроцитов.

Астроциты плотно окружают капилляры кровеносных сосудов мозга, располагаясь между ними и нейронами. На этом основании предполагают, что астроциты играют важную роль в метаболизме нейронов, регулируя проницаемость капилляров для определенных веществ .

Одной из важных функций астроцитов является их способность поглотать избыток ионов К+, которые могут накапливаться в межклеточном пространстве при высокой нейронной активности. В областях плотного прилегания астроцитов формируются каналы щелевых контактов, через которые астроциты могут обмениваться различными ионами небольшого размера и, в частности, ионами К+ Это увеличивает возможности поглощения ими ионов К+ Неконтролируемое накопление ионов К+ в межнейронном пространстве приводило бы к повышению возбудимости нейронов. Тем самым астроциты, поглощая избыток ионов К+ из интерстициальной жидкости, предотвращают повышение возбудимости нейронов и формирование очагов повышенной нейронной активности. Появление таких очагов в мозге человека может сопровождаться тем, что их нейроны генерируют серии нервных импульсов, которые называют судорожными разрядами.

Астроциты принимают участие в удалении и разрушении нейромедиаторов, поступающих во внесинаптические пространства. Тем самым они предотвращают накопление в межнейрональных пространствах нейромедиаторов, которое могло бы привести к нарушению функций мозга.

Нейроны и астроциты разделены межклеточными щелями 15-20 мкм, называемыми интерстициальным пространством. Интерстициальные пространства занимают до 12-14% объема мозга. Важным свойством астроцитов является их способность поглощать из внеклеточной жидкости этих пространств СО2, и тем самым поддерживать стабильной рН мозга .

Астроциты участвуют в формировании поверхностей раздела между нервной тканью и сосудами мозга, нервной тканью и оболочками мозга в процессе роста и развития нервной ткани.

Олигодендроциты характеризуются наличием небольшого числа коротких отростков. Одной из их основных функций является формирование миелиновой оболочки нервных волокон в пределах ЦНС . Эти клетки располагаются также в непосредственной близости от тел нейронов, но функциональное значение этого факта неизвестно.

Клетки микроглии составляют 5-20% от общего количества глиальных клеток и рассеяны по всей ЦНС. Установлено, что антигены их поверхности идентичны антигенам моноцитов крови. Это свидетельствует об их происхождении из мезодермы, проникновении в нервную ткань во время эмбрионального развития и последующей трансформации в морфологически распознаваемые клетки микроглии. В связи с этим принято считать, что важнейшей функцией микроглии является защита мозга. Показано, что при повреждении нервной ткани в ней возрастает число фагоцитирующих клеток за счет макрофагов крови и активации фагоцитарных свойств микроглии. Они удаляют погибшие нейроны, глиальные клетки и их структрурные элементы, фагоцитируют инородные частицы.

Шванновские клетки формируют миелиновую оболочку периферических нервных волокон за пределами ЦНС. Мембрана этой клетки многократно обертывается вокруг , и толщина образующейся миелиновой оболочки может превысить диаметр нервного волокна. Длина миелинизированных участков нервного волокна составляет 1-3 мм. В промежутках между ними (перехваты Ранвье) нервное волокно остается покрытым только поверхностной мембраной, обладающей возбудимостью.

Одним из важнейших свойств миелина является его высокое сопротивление электрическому току. Оно обусловлено высоким содержанием в миелине сфингомиелина и других фосфолипидов, придающих ему токоизолирующие свойства. На участках нервного волокна, покрытых миелином, процесс генерации нервных импульсов невозможен. Нервные импульсы генерируются только на мембране перехватов Ранвье, что обеспечивает более высокую скорость проведения нервных импульсов но миелинизированным нервным волокнам в сравнении с немиелинизированными.

Известно, что структура миелина может легко нарушаться при инфекционных, ишемических, травматических, токсических повреждениях нервной системы. При этом развивается процесс демиелинизации нервных волокон. Особенно часто демиелинизация развивается при заболевании рассеянным склерозом. В результате демиелинизации скорость проведения нервных импульсов по нервным волокнам уменьшается, скорость доставки в мозг информации от рецепторов и от нейронов к исполнительным органам падает. Это может вести к нарушениям сенсорной чувствительности, нарушениям движений, регуляции работы внутренних органов и другим тяжелым последствиям.

Структура и функции нейронов

Нейрон (нервная клетка) является структурной и функциональной единицей .

Анатомическая структура и свойства нейрона обеспечивают выполнение его основных функций : осуществление метаболизма, получение энергии, восприятие различных сигналов и их обработка, формирование или участие в ответных реакциях, генерация и проведение нервных импульсов, объединение нейронов в нейронные цепи, обеспечивающие как простейшие рефлекторные реакции, так и высшие интегративные функции мозга.

Нейроны состоят из тела нервной клетки и отростков — аксона и дендритов.

Рис. 2. Строение нейрона

Тело нервной клетки

Тело (перикарион, сома) нейрона и его отростки на всем протяжении покрыты нейрональной мембраной. Мембрана тела клетки отличается от мембраны аксона и дендритов содержанием различных , рецепторов, наличием на ней .

В теле нейрона расположена нейроплазма и отграниченные от нее мембранами ядро, шероховатый и гладкий эндоплазматический ретикулум, аппарат Гольджи, митохондрии. В хромосомах ядра нейронов содержится набор генов, кодирующих синтез белков, необходимых для формирования структуры и осуществления функций тела нейрона, его отростков и синапсов. Это белки, выполняющие функции ферментов, переносчиков, ионных каналов, рецепторов и др. Некоторые белки выполняют функции, находясь в нейроплазме, другие — встраиваясь в мембраны органелл, сомы и отростков нейрона. Часть из них, например ферменты, необходимые для синтеза нейромедиаторов, путем аксонального транспорта доставляются в аксонную терминаль. В теле клетки синтезируются пептиды, необходимые для жизнедеятельности аксонов и дендритов (например, ростовые факторы). Поэтому при повреждении тела нейрона его отростки дегенерируют, разрушаются. Если же тело нейрона сохранено, а поврежден отросток, то происходит его медленное восстановление (регенерация) и восстановление иннервации денервированных мышц или органов.

Местом синтеза белков в телах нейронов является шероховатый эндоплазматический ретикулум (тигроидные гранулы или тела Ниссля) или свободные рибосомы. Содержание их в нейронах выше, чем в глиальных или других клетках организма. В гладком эндоплазматическом ретикулуме и аппарате Гольджи белки приобретают свойственную им пространственную конформацию, сортируются и направляются в транспортные потоки к структурам тела клетки, дендритов или аксона.

В многочисленных митохондриях нейронов в результате процессов окислительного фосфорилирования образуется АТФ, энергия которой используется для поддержания жизнедеятельности нейрона, работы ионных насосов и поддержания асимметрии ионных концентраций но обе стороны мембраны. Следовательно, нейрон находится в постоянной готовности не только к восприятию различных сигналов, но и к ответной реакции на них — генерации нервных импульсов и их использованию для управления функциями других клеток.

В механизмах восприятия нейронами различных сигналов принимают участие молекулярные рецепторы мембраны тела клетки, сенсорные рецепторы, образованные дендритами, чувствительные клетки эпителиального происхождения. Сигналы от других нервных клеток могут поступать к нейрону через многочисленные синапсы, образованные на дендритах или на геле нейрона.

Дендриты нервной клетки

Дендриты нейрона формируют дендритное дерево, характер ветвления и размер которого зависят от числа синаптических контактов с другими нейронами (рис. 3). На дендритах нейрона имеются тысячи синапсов, образованных аксонами или дендритами других нейронов.

Рис. 3. Синаптические контакты интернейрона. Стрелками слева показано поступление афферентных сигналов к дендритам и телу интернейрона, справа — направление распространения эфферентных сигналов интернейрона к другим нейронам

Синапсы могут быть гетерогенными как по функции (тормозные, возбуждающие), так и по типу используемого нейромедиатора. Мембрана дендритов, участвующая в образовании синапсов, является их постсинаптической мембраной, в которой содержатся рецепторы (лигандзависимые ионные каналы) к нейромедиатору, используемому в данном синапсе.

Возбуждающие (глутаматергические) синапсы располагаются преимущественно на поверхности дендритов, где имеются возвышения, или выросты (1-2 мкм), получившие название шипиков. В мембране шипиков имеются каналы, проницаемость которых зависит от трансмембранной разности потенциалов. В цитоплазме дендритов в области шипиков обнаружены вторичные посредники внутриклеточной передачи сигналов, а также рибосомы, на которых синтезируется белок в ответ на поступление синаптических сигналов. Точная роль шипиков остается неизвестной, но очевидно, что они увеличивают площадь поверхности дендритного дерева для образования синапсов. Шипики являются также структурами нейрона для получения входных сигналов и их обработки. Дендриты и шипики обеспечивают передачу информации от периферии к телу нейрона. Мембрана дендритов в покос поляризована благодаря асимметричному распределению минеральных ионов, работе ионных насосов и наличию в ней ионных каналов. Эти свойства лежат в основе передачи по мембране информации в виде локальных круговых токов (электротонически), которые возникают между постсинаптическими мембранами и граничащими с ними участками мембраны дендрита.

Локальные токи при их распространении по мембране дендрита затухают, но оказываются достаточными по величине для передачи на мембрану тела нейрона сигналов, поступивших через синаптические входы к дендритам. В мембране дендритов пока не выявлено потенциалзависимых натриевых и калиевых каналов. Она не обладает возбудимостью и способностью генерировать потенциалы действия. Однако известно, что по ней может распространяться потенциал действия, возникающий на мембране аксонного холмика. Механизм этого явления неизвестен.

Предполагается, что дендриты и шипики являются частью нейронных структур, участвующих в механизмах памяти. Количество шипиков особенно велико в дендритах нейронов коры мозжечка, базальных ганглиев, коры мозга. Площадь дендритного дерева и число синапсов уменьшаются в некоторых полях коры мозга пожилых людей.

Аксон нейрона

Аксон - отросток нервной клетки, не встречающийся в других клетках. В отличие от дендритов, число которых у нейрона различно, аксон у всех нейронов один. Его длина может достигать до 1,5 м. В месте выхода аксона из тела нейрона имеется утолщение — аксонный холмик, покрытый плазматической мембраной, которая вскоре покрывается миелином. Участок аксонного холмика, непокрытый миелином, называют начальным сегментом. Аксоны нейронов вплоть до своих конечных разветвлений покрыты миелиновой оболочкой, прерываемой перехватами Ранвье — микроскопическими безмиелиновыми участками (около 1 мкм).

На всем протяжении аксон (миелинизированного и немиелинизированного волокна) покрыт бислойной фосфолипидной мембраной со встроенными в нее белковыми молекулами, которые выполняют функции транспорта ионов, потенциалзависимых ионных каналов и др. Белки распределены равномерно в мембране немиелинизированного нервного волокна, а в мембране миелинизированного нервного волокна они располагаются преимущественно в области перехватов Ранвье. Поскольку в аксоплазме нет шероховатого ретикулума и рибосом, то очевидно, что эти белки синтезируются в теле нейрона и доставляются в мембрану аксона посредством аксонального транспорта.

Свойства мембраны, покрывающей тело и аксон нейрона , различны. Это различие касается прежде всего проницаемости мембраны для минеральных ионов и обусловлено содержанием различных типов . Если в мембране тела и дендритов нейрона превалирует содержание лигандзависимых ионных каналов (в том числе постсинаптических мембран), то в мембране аксона, особенно в области перехватов Ранвье, имеется высокая плотность потенциалзависимых натриевых и калиевых каналов.

Наименьшей величиной поляризации (около 30 мВ) обладает мембрана начального сегмента аксона. В более удаленных от тела клетки участках аксона величина трансмембранного потенциала составляет около 70 мВ. Низкая величина поляризации мембраны начального сегмента аксона обусловливает то, что в этой области мембрана нейрона обладает наибольшей возбудимостью. Именно сюда и распространяются по мембране тела нейрона с помощью локальных круговых электрических токов постсинаптические потенциалы, возникшие на мембране дендритов и тела клетки в результате преобразования в синапсах информационных сигналов, поступивших к нейрону. Если эти токи вызовут деполяризацию мембраны аксонного холмика до критического уровня (Е к), то нейрон ответит на поступление к нему сигналов от других нервных клеток генерацией своего потенциала действия (нервного импульса). Возникший нервный импульс далее проводится по аксону к другим нервным, мышечным или железистым клеткам.

На мембране начального сегмента аксона имеются шипики, на которых образуются ГАМК-ергические тормозные синапсы. Поступление сигналов по этим от других нейронов может предотвращать генерацию нервного импульса.

Классификация и виды нейронов

Классификация нейронов проводится как по морфологическим, так и по функциональным признакам.

По количеству отростков различают мультиполярные, биполярные и псевдоуниполярные нейроны.

По характеру связей с другими клетками и выполняемой функции различают сенсорные, вставочные и двигательные нейроны. Сенсорные нейроны называют также афферентными нейронами, а их отростки — центростремительными. Нейроны, выполняющие функцию передачи сигналов между нервными клетками, называют вставочными , или ассоциативными. Нейроны, аксоны которых образуют синапсы на эффекторных клетках (мышечных, железистых), относят к двигательным, или эфферентным , их аксоны называют центробежными.

Афферентные (чувствительные) нейроны воспринимают информацию сенсорными рецепторами, преобразуют ее в нервные импульсы и проводят к головного и спинного мозга. Тела чувствительных нейронов находятся в спинальных и черепно-мозговых . Это псевдоуниполярные нейроны, аксон и дендрит которых отходят от тела нейрона вместе и затем разделяются. Дендрит следует на периферию к органам и тканям в составе чувствительных или смешанных нервов, а аксон в составе задних корешков входит в дорсальные рога спинного мозга или в составе черепных нервов — в головной мозг.

Вставочные , или ассоциативные, нейроны выполняют функции переработки поступающей информации и, в частности, обеспечивают замыкание рефлекторных дуг. Тела этих нейронов располагаются в сером веществе головного и спинного мозга.

Эфферентные нейроны также выполняют функцию переработки поступившей информации и передачи эфферентных нервных импульсов от головного и спинного мозга к клеткам исполнительных (эффекторных) органов.

Интегративная деятельность нейрона

Каждый нейрон получает огромное количество сигналов через многочисленные синапсы, расположенные на его дендритах и теле, а также через молекулярные рецепторы плазматических мембран, цитоплазмы и ядра. В передаче сигналов используется множество различных типов нейромедиаторов, нейромодуляторов и других сигнальных молекул. Очевидно, что для формирования ответной реакции на одновременное поступление множества сигналов, нейрон должен обладать способностью их интегрировать.

Совокупность процессов, обеспечивающих обработку поступающих сигналов и формирование на них ответной реакции нейрона, входит в понятие интегративной деятельности нейрона.

Восприятие и обработка сигналов, поступающих к нейрону, осуществляется при участии дендритов, тела клетки и аксонного холмика нейрона (рис. 4).

Рис. 4. Интеграция сигналов нейроном.

Одним из вариантов их обработки и интеграции (суммирования) является преобразование в синапсах и суммирование постсинаптических потенциалов на мембране тела и отростков нейрона. Воспринятые сигналы преобразуются в синапсах в колебание разности потенциалов постсинаптической мембраны (постсинаптические потенциалы). В зависимости от типа синапса полученный сигнал может быть преобразован в небольшое (0,5-1,0 мВ) деполяризующее изменение разности потенциалов (ВПСП — синапсы на схеме изображены в виде светлых кружков) либо гиперполяризующее (ТПСП — синапсы на схеме изображены в виде черных кружков). К разным точкам нейрона могут поступать одновременно множество сигналов, часть из которых трансформируется в ВПСП, а другие — в ТПСП.

Эти колебания разности потенциалов распространяются с помощью локальных круговых токов по мембране нейрона в направлении аксонного холмика в виде волн деполяризации (на схеме белого цвета) и гиперполяризации (на схеме черного цвета), накладывающихся друг на друга (на схеме участки серого цвета). При этом наложении амплитуды волны одного направления суммируются, а противоположных — уменьшаются (сглаживаются). Такое алгебраическое суммирование разности потенциалов на мембране получило название пространственного суммирования (рис. 4 и 5). Результатом этого суммирования может быть либо деполяризация мембраны аксонного холмика и генерация нервного импульса (случаи 1 и 2 на рис. 4), либо ее гиперполяризация и предотвращение возникновения нервного импульса (случаи 3 и 4 на рис. 4).

Для того чтобы сместить разность потенциалов мембраны аксонного холмика (около 30 мВ) до Е к, ее надо деполяризовать на 10-20 мВ. Это приведет к открытию имеющихся в ней потенциалзависимых натриевых каналов и генерации нервного импульса. Поскольку при поступлении одного ПД и его преобразовании в ВПСП деполяризация мембраны может достигать до 1 мВ, а се распространение к аксонному холмику идет с затуханием, то для генерации нервного импульса требуетсяодновременное поступление к нейрону через возбуждающие синапсы 40-80 нервных импульсов от других нейронов и суммирование такого же количества ВПСП.

Рис. 5. Пространственная и временная суммация ВПСП нейроном; а — BПСП на одиночный стимул; и — ВПСП на множественную стимуляцию от разных афферентов; в — ВПСП на частую стимуляцию через одиночное нервное волокно

Если в это время к нейрону поступит некоторое количество нервных импульсов через тормозные синапсы, то его активация и генерация ответного нервного импульса будет возможной при одновременном увеличении поступления сигналов через возбуждающие синапсы. В условиях, когда сигналы, поступающие через тормозные синапсы вызовут гиперполяризацию мембраны нейрона, равную или превышающую по величине деполяризацию, вызванную сигналами, поступающими через возбуждающие синапсы, деполяризация мембраны аксонного холмика будет невозможна, нейрон не будет генерировать нервные импульсы и станет неактивным.

Нейрон осуществляет также временное суммирование сигналов ВПСП и ТПСП, поступающих к нему почти одновременно (см. рис. 5). Вызываемые ими изменения разности потенциалов в околосинаптических областях также могут алгебраически суммироваться, что и получило название временного суммирования.

Таким образом, каждый генерируемый нейроном нервный импульс, равно как и период молчания нейрона, заключает информацию, поступившую от множества других нервных клеток. Обычно чем выше частота поступающих к нейрону сигналов от других клеток, тем с большей частотой он генерирует ответные нервные импульсы, посылаемые им по аксону к другим нервным или эффекторным клеткам.

В силу того что в мембране тела нейрона и даже его дендритов имеются (хотя и в небольшом числе) натриевые каналы, потенциал действия, возникший на мембране аксонного холмика, может распространяться на тело и некоторую часть дендритов нейрона. Значение этого явления недостаточно ясно, но предполагается, что распространяющийся потенциал действия на мгновение сглаживает все имевшиеся на мембране локальные токи, обнуляет потенциалы и способствует более эффективному восприятию нейроном новой информации.

В преобразовании и интеграции сигналов, поступающих к нейрону, принимают участие молекулярные рецепторы. При этом их стимуляция сигнальными молекулами может вести через инициированные (G-белками, вторыми посредниками) изменения состояния ионных каналов, трансформации воспринятых сигналов в колебание разности потенциалов мембраны нейрона, суммированию и формированию ответной реакции нейрона в виде генерации нервного импульса или его торможению.

Преобразование сигналов метаботропными молекулярными рецепторами нейрона сопровождается его ответом в виде запуска каскада внутриклеточных превращений. Ответной реакцией нейрона в этом случае может быть ускорение общего метаболизма, увеличение образования АТФ, без которых невозможно повышение его функциональной активности. С использованием этих механизмов нейрон интегрирует полученные сигналы для улучшения эффективности своей собственной деятельности.

Внутриклеточные превращения в нейроне, инициированные полученными сигналами, часто ведут к усилению синтеза белковых молекул, выполняющих в нейроне функции рецепторов, ионных каналов, переносчиков. Увеличивая их количество, нейрон приспосабливается к характеру поступающих сигналов, усиливая чувствительность к более значимым из них и ослабляя — к менее значимым.

Получение нейроном ряда сигналов может сопровождаться экспрессией или репрессией некоторых генов, например контролирующих синтез нейромодуляторов пептидной природы. Поскольку они доставляются в аксонные терминали нейрона и используются в них для усиления или ослабления действия его нейромедиаторов на другие нейроны, то нейрон в ответ на полученные им сигналы может в зависимости от получаемой информации оказывать более сильное или более слабое влияние на контролируемые им другие нервные клетки. С учетом того что модулирующее действие нейропептидов способно продолжаться в течение длительного времени, влияние нейрона на другие нервные клетки также может продолжаться долго.

Таким образом, благодаря способности интегрировать различные сигналы нейрон может тонко реагировать на них широким спектром ответных реакций, позволяющих эффективно приспосабливаться к характеру поступающих сигналов и использовать их для регуляции функций других клеток.

Нейронные цепи

Нейроны ЦНС взаимодействуют друг с другом, образуя в месте контакта разнообразные синапсы. Возникающие при этом нейронные пени многократно увеличивают функциональные возможности нервной системы. К наиболее распространенным нейронным цепям относят: локальные, иерархические, конвергентные и дивергентные нейронные цепи с одним входом (рис. 6).

Локальные нейронные цепи образуются двумя или большим числом нейронов. При этом один из нейронов (1) отдаст свою аксонную коллатераль нейрону (2), образуя на его теле аксосоматический синапс, а второй — образует аксоном синапс на теле первого нейрона. Локальные нейронные сети могут выполнять функцию ловушек, в которых нервные импульсы способны длительно циркулировать по кругу, образованному несколькими нейронами.

Возможность длительной циркуляции однажды возникшей волны возбуждения (нервного импульса) за счет передачи но кольцевой структуре, экспериментально показал профессор И.А. Ветохин в опытах на нервном кольце медузы.

Круговая циркуляция нервных импульсов по локальным нейронным цепям выполняет функцию трансформации ритма возбуждений, обеспечивает возможность длительного возбуждения после прекращения поступления к ним сигналов, участвует в механизмах запоминания поступающей информации.

Локальные цепи могут выполнять также тормозную функцию. Примером ее является возвратное торможение, которое реализуется в простейшей локальной нейронной цепи спинного мозга, образуемой а-мотонейроном и клеткой Реншоу.

Рис. 6. Простейшие нейронные цепи ЦНС. Описание в тексте

При этом возбуждение, возникшее в мотонейроне, распространяется по ответвлению аксона, активирует клетку Реншоу, которая тормозит а-мотонейрон.

Конвергентные цепи образуются несколькими нейронами, на один из которых (обычно эфферентный) сходятся или конвергируют аксоны ряда других клеток. Такие цепи широко распространены в ЦНС. Например, на пирамидные нейроны первичной моторной коры конвергируют аксоны многих нейронов чувствительных полей коры. На моторные нейроны вентральных рогов спинного мозга конвергируют аксоны тысяч чувствительных и вставочных нейронов различных уровней ЦНС. Конвергентные цепи играют важную роль в интеграции сигналов эфферентными нейронами и осуществлении координации физиологических процессов.

Дивергентные цепи с одним входом образуются нейроном с ветвящимся аксоном, каждая из ветвей которого образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Это достигается за счет сильного ветвления (образования нескольких тысяч веточек) аксона. Такие нейроны часто встречаются в ядрах ретикулярной формации ствола мозга. Они обеспечивают быстрое повышение возбудимости многочисленных отделов мозга и мобилизацию его функциональных резервов.



Понравилась статья? Поделиться с друзьями: