Современные средства измерения температуры. Методы и средства измерения температуры общие сведения. Погрешности жидкостно-стеклянных термометров

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО Рыбинская государственная авиационная технологическая академия имени П.А. Соловьева.

Социально – экономический факультет

Кафедра - Организация Производства и Управление Качеством

КУРСОВАЯ РАБОТА

МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ

МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ. ДОСТОИНСТВА И НЕДОСТАТКИ КАЖДОГО МЕТОДА. МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ СРЕДСТВ ИЗМЕРЕНИЙ.

Пояснительная записка

Выполнил: студент группы УКТ-06

Данило М.И.

“___”__________ 2008 г.

Проверил: Старший преподаватель

Лебедева И.Г.

“___”__________ 2008 г.

Рыбинск 2008 г.

Введение

Высокопроизводительная, экономичная и безопасная работа технологических агрегатов машиностроительной промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования.

Основными параметрами (величинами), которые необходимо контролировать при работе агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.

Методы и технические средства
измерения температуры

1.1ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ

Существуют два основных способа для измерения температур - контактные и бесконтактные. Контактные способы основаны на непосредственном контакте измерительного преобразователя температуры с исследуемым объектом, в результате чего добиваются состояния теплового равновесия преобразователя и объекта. Этому способу присущи свои недостатки. Температурное поле объекта искажается при введении в него термоприемника. Температура преобразователя всегда отличается от истинной температуры объекта. Верхний предел измерения температуры ограничен свойствами материалов, из которых изготовлены температурные датчики. Кроме того, ряд задач измерения температуры в недоступных вращающихся с большой скоростью объектах не может быть решен контактным способом.

Бесконтактный способ основан на восприятии тепловой энергии, передаваемой через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого объема. Этот способ менее чувствителен, чем контактный. Измерения температуры в большой степени зависят от воспроизведения условий градуировки при эксплуатации, а в противном случае появляются значительные погрешности. Устройство, служащее для измерения температуры путем преобразования ее значений в сигнал или показание, называется термометром (ГОСТ 13417-76),

По принципу действия все термометры делятся на следующие группы, которые используются для различных интервалов температур:

1 Термометры расширения от -260 до +700 °С, основанные на изменении объемов жидкостей или

твердых тел при изменении температуры.

2 Манометрические термометры от -200 до +600 °С, измеряющие температуру по зависимости давления

жидкости, пара или газа в замкнутом объеме от изменения температуры.

3. Термометры электрического сопротивления стандартные от -270 до +750 °С, преобразующие

изменение температуры в изменение электрического сопротивления проводников или полупроводников.

4. Термоэлектрические термометры (или пирометры), стандартные от -50 до +1800 °С, в основе

преобразования которых лежит зависимость значения электродвижущей силы от температуры спая

разнородных проводников.

Пирометры излучения от 500 до 100000 °С, основанные на измерении температуры по значению

интенсивности лучистой энергии, испускаемой нагретым телом,

Термометры, основанные на электрофизических явлениях от -272 до +1000 °С (термошумовые

термоэлектрические преобразователи, объемные резонансные термопреобразователи, ядерные резонансные

1.2Методы измерения температуры

Для определения значения температуры какого-либо тела необходимо выбрать эталон температуры, то есть тело, которое при определённых условиях, равновесных и достаточно легко воспроизводимых, имело бы определённое значение температуры. Это значение температуры является реперной точкой соответствующей шкалы температур - упорядоченной последовательности значений температуры, позволяющей количественно определять температуру того или иного тела. Температурная шкала позволяет косвенным образом определять температуру тела путем прямого измерения какого-либо его физического параметра, зависящего от температуры.

Наиболее часто при получении шкалы температур используются свойства вода. Точки таяния льда и кипения воды при нормальном атмосферном давлении выбраны в качестве реперных точек в современных (но не обязательно изначальных) температурных шкалах, предложенных Андерсом Цельсием (1701 - 1744), Рене Антуаном Фершо Реомюром (1683 - 1757), Даниэлем Габриэлем Фаренгейтом (1686 - 1736). Последний создал первые практически пригодные спиртовой и ртутный термометры, широко используемые до сих пор. Температурные шкалы Реомюра и Фаренгейта применяют в настоящее время в США, Великобритании и некоторых других странах.

Введенную в 1742 году температурную шкалу Цельсия, который предложил температурный интервал между температурами таяния льда и кипения воды при нормальном давлении (1 атм или 101 325 Па) разделить на сто равных частей (градусов Цельсия), широко используют и сегодня, правда в уточненном виде, когда один градус Цельсия считается равным одному кельвину (см. ниже). При этом температура таяния льда берется равной 0 oC, а температура кипения воды становится приблизительно равной 99,975 oC. Возникающие при этом поправки, как правило, не имеют существенного значения, так как большинство используемых спиртовых, ртутных и электронных термометров не обладают достаточной точностью (поскольку в этом обычно нет необходимости). Это позволяет не учитывать указанные, очень небольшие поправки.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала - термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Эта температурная шкала подробно рассмотрена в третьей главе. Отметим только, что единицей измерения температуры в этой температурной шкале является один кельвин (1 К), одна из семи основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина) (1824 - 1907), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала - международная практическая. Эта шкала имеет 11 реперных точек - температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина - легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Тело, с помощью измерения термометрического признака которого осуществляется измерение температуры, называется термометрическим телом.

Термометрическими признаками могут быть изменения: объёма газа или жидкости, электрического сопротивления тел, разности электрического потенциала на границе раздела двух проводящих тел и т.д. Соответствующие этим признакам приборы для измерения температуры (термометры) будут: газовый и ртутный термометры, термометры, использующие в качестве датчика термосопротивление или термопару.

Приводя термометрическое тело (датчик термометра) в состояние теплового контакта с тем телом, температуру которого необходимо измерить, можно на основании нулевого начала термодинамики утверждать, что по прошествии времени, достаточного для установления термодинамического равновесия, их температуры сравняются. Это позволяет приписать телу то же значение температуры, которое показывает термометр.

Другой метод измерения температуры реализован в пирометрах - приборах для измерения яркостной температуры тел по интенсивности их теплового излучения. При этом достигается равновесное состояние термодинамической системы, состоящей из самого пирометра и теплового излучения, принимаемого им. Подробнее это явление рассмотрено в разделе курса, посвящённом квантовым свойствам равновесного теплового излучения. Сейчас мы только отметим, что оптическая пирометрия (бесконтактные методы измерения температур) используется в металлургии для измерения температуры расплава и проката, в лабораторных и производственных процессах, где необходимо измерение температуры нагретых газов, а также при исследованиях плазмы.

Первый термометр был изобретён Галилео Галилеем (1564 - 1642) и представлял собой газовый термометр.

Газовый термометр постоянного объёма состоит из термометрического тела - порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, - давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.

Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра - хорошо совпадает с абсолютной шкалой температур (о ней подробно будет сказано ниже). Во второй главе мы подробнее опишем идеально-газовый термометр, определяющий абсолютную шкалу температур.

Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.

Жидкостной термометр - это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия. При высоких температурах (свыше 300 oC) в капилляр накачивают азот (давление до 100 атм или 107 Па), чтобы воспрепятствовать кипению ртути. Применение в жидкостном термометре вместо ртути таллия позволяет существенно понизить нижнюю границу измерения температуры до -59 oC.

Другими видами широко распространённых жидкостных термометров являются спиртовой (от -80 oC до +80 oC) и пентановый (от -200 oC до +35 oC). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.

С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.

В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела - металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (~20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.

В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.

Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.

Другой принцип измерения температуры реализован в термопарах. Термопара представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (свободный спай) - при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а, следовательно, температуру измерительного спая.

В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком - возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий-платина.

Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.

В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов

1.2.1ОПИСАНИЕ ПРИНЦИПА БЕСКОНТАКТНОГО МЕТОДА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

Thermopiles – это термоэлементы включенные последовательно, которые используют известный Seebeck – эффект. Термоэлемент состоит из двух электропроводных материалов, которые расположены в виде проводящих дорожек и которые в одной точке (так называемой hot junction) контактируют друг с другом. Если за счет внешнего воздействия возникнет разница температур между точкой контакта (hot junction) и обеими открытыми концами (cold junction), то на обоих концах термоэлементов появится напряжение в несколько милливольт.

При бесконтактном способе измерения температуры повышение температуры точки «hot junction» вызывается за счет абсорбирования попадающего в эту точку инфракрасного излучения. Каждый объект излучает инфракрасный свет, причем энергия этого света повышается с повышением температуры объекта. Базируясь на этом эффекте Thermopile-модули измеряют излучаемую мощность и таким образом с высокой точностью определяют температуру объекта.

1.2.2ЛЮМИНЕСЦЕНТНЫЙ МЕТОД ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

В основе люминесцентных методов измерения температуры лежит температурная зависимость интенсивности люминесцентного излучения не-которых люминофоров, которое находит применение в различных датчиках измерения температуры и термопокрытиях.

Современные волоконно-оптические датчики позволяют измерять мно-гие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике:

безындукционность (т.е. неподверженность влиянию электромагнитной ин-дукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.

1. Датчик на основе теплового излучения. В качестве устройств для измерения температуры могут быть использованы волоконно-оптические датчики на основе теплового излучения, сущность которых раскрываемая в частности в состоит в следующем. Изучаемое вещество при температуре большей 0 К вследствие тепловых колебаний атомов и молекул испускает те-пловое излучение. Энергия излучения увеличивается по мере повышения температуры, а длина волны, на которой излучение максимально, уменьша-ется. Соответственно для определения температуры можно использовать формулу Планка для энергии теплового излучения черного тела на фиксиро-ванной длине волны или в диапазоне волн.

Основным преимуществом данного способа является возможность бес-контактного измерения высоких температур. В зависимости от диапазона из-меряемых температур выбирают световые детекторы и оптические волокна. Область измерения температур для волоконно-оптических датчиков излуче-ния находится в пределах от 400 до 2000 °С. При использовании оптических волокон, прозрачных для инфракрасных лучей с длиной волны 2 мкм и бо-лее, можно осуществлять измерение и более низких температур.

2. Датчик на основе поглощения света полупроводником. Известны также волоконно-оптические датчики, работа которых основана на оптиче-ских свойствах некоторых полупроводников. Используемый полупроводник имеет граничную длину волны спектра оптического поглощения. Для света с более короткой длиной волны, чем у проводника, поглощение усиливается, причем по мере роста температуры граничная длина волны отодвигается в сторону более длинных волн (около 3 нм/К). При подаче на полупроводнико-вый кристалл луч от источника света, имеющего спектр излучения в окрест-ности указанной границы спектра поглощения, интенсивность света, прохо-дящего через светочувствительную часть датчика, с повышением температу-ры будет падать. По выходному сигналу детектора, указанным методом можно регистрировать температуру.

Используя данный метод можно мерить температуру в интервалеот 30 до 300 °С с погрешностью ±0,5 °С.

3. Датчик на основе флуоресценции. Данный датчик устроен сле-дующим образом. На торец оптического волокна светочувствительной части нанесено флуоресцентное вещество. Флуоресцентное излучение, возникаю-щее под воздействием ультрафиолетовых лучей, проводимых оптическим волокном, принимается этим же волокном. Температурный сигнал выявляет-ся путем вычисления отношения соответствующих значений интенсивности флуоресцентного излучения для сигнала с длиной волны, сильно зависящего от температуры к интенсивности сигнала с другой длиной волны, слабо зави-сящего от температуры.

Область измеряемых температур таким датчиком находится в пределах от -50 до 200 °С с погрешностью ±0,1 °С.

Использование волоконно-оптических датчиков, при всей своей при-влекательности, позволяет производить измерение температуры только в ло-кальной точке объекта, что несколько сужает область их применения.

Заключение

Температура является одним из основных параметров, подлежащих контролю со стороны систем автоматического управления металлургическими процессами. В условиях агрессивных сред и высоких температур, наиболее подходящими для использования являются фотоэлектрические пирометры. Они позволяют контролировать температуру от 100 до 6000 0С и выше. Одним из главных достоинств данных устройств является отсутствие влияния температурного поля нагретого тела на измеритель, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Так же фотоэлектрические пирометры обеспечивают непрерывное автоматическое измерение и регистрацию температуры, что позволяет использовать их в системах автоматического управления процессами без дополнительных затрат на приобретение и обслуживание устройств сопряжения.

Представленный в работе обзор люминесцентных методов измерения

температуры по сравнению с контактными методами обладает теми же пре-имуществами, что и оптические методы. В то же время он является менее сложным при организации процесса изучения температуры и не менее точ-ным по сравнению с другими оптическими методами. Кроме того, использо-вание свойств люминесценции делает возможным разработку методов изме-рения температурных полей объектов сложной геометрической формы.

Из вышеприведенного обзора очевидна необходимость дальнейшей разработки и совершенствования технологий измерения температуры с ис-пользованием люминесцентных методов

Список использованных источников.

    Преображенский В. П. Теплотехнические измерения и приборы. М.: Энергия, 1978, - 704 с

    Чистяков С. Ф., Радун Д. В. Теплотехнические измерения и приборы. М.: Высшая школа, 1972, - 392

    Измерения в промышленности: Справ. Изд.

    Никоненко В.А., Сильд Ю.А., Иванов И.А. Разработка системы метрологического обеспечения измерительных тепловизионных приборов. - Измерительная техника, № 4, 2004, с. 48-51метрологических ... для каждой стали температуры превращение...

  1. Средства учета количества электричества и электрической энергии

    Дипломная работа >> Физика

    4 Анализ метрологических характеристик 4.1 ... каждой заготовки будет производиться до одинаковой температуры ... как достоинства , так и недостатки ... метод анализа. - М.: Химия, 1984. Каталог. Приборы и средства автоматизации. № 7. М. 1989. Электрические измерения ...

  2. Описание и применение пирометров

    Реферат >>

    По сравнению с контактными средствами измерения температуры , т. е. термометрами... измерениях теряют свои метрологические ... недостатки пирометрического (бесконтактного) метода перед контактными. Перед контактными методами измерения температуры ... потоков, каждый из...

  3. Нормирование точности и технические измерения

    Контрольная работа >> Промышленность, производство

    ... измерения и/или на применяемые средства измерений . Например, при измерении длины всегда существенное значение имеет температура ... достоинства и недостатки ... метод противопоставления. МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ Для оценки метрологических ...

Температурой называется статистическая величина, характеризующая тепловое состояние тела и пропорциональная средней кинематической энергии молекул тела. За единицу температуры принимают кельвин (К). Температура может быть также представлена в градусах Цельсия (°С). Нуль шкалы Кельвина равен абсолютному нулю, поэтому все температуры по этой шкале положительные. Связь между температурами t по Цельсию и T по Кельвину определяется следующим уравнением:



Измерить температуру непосредственно, как, например, линейные размеры, невозможно. Поэтому температуру определяют косвенно - по изменению физических свойств различных тел, получивших название термометрических.


Измерение температуры связано с преобразованием сигнала измерительной информации (температуры) в какое-либо свойство, связанное с температурой.


Для практических целей, связанных с измерением температуры, принята Международная температурная шкала (МТШ-90) (рис. 2.89), которая является обязательной для всех метрологических органов. Она основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определенные значения температуры.



Рис. 2.89. с реперными точками (подчеркнуты)

Для измерения температуры наибольшее распространение получили следующие методы, основанные:


На тепловом расширении жидких, газообразных и твердых тел (термомеханический эффект);


Изменении давления внутри замкнутого объема при изменении температуры (манометрические);


Изменении электрического сопротивления тел при изменении температуры (терморезисторы);


Термоэлектрическом эффекте;


Использовании электромагнитного излучения нагретых тел.


Приборы, предназначенные для измерения температуры, называются термометрами . Они подразделяются на две большие группы: контактные и бесконтактные.


Контактное измерение температуры .


Термометры расширения нашли широкое распространение в практике контактных измерений температуры. Основные типы механических контактных термометров, их метрологические характеристики, преимущества, недостатки и область применения представлены в табл. 2.18.

Таблица 2.18. Основные метрологические характеристики механических контактных термометров

Наименование прибора

Тип прибора

Пределы измерений,°С

Погрешность измерения,%

Инерцион ность

Преимущества

Недостатки

Область применения

Металли ческие термометры расширения

Дилато метриче ские

Дешевые, надежные, малое время срабатывания; очень большие перестановочные усилия

Малая точность, высокая инерционность

Температурные выключатели

Биметал лические

Дешевые, надежные; большие перестановочные усилия

Низкая точность

Оценочный контроль температуры, температурные выключатели

Жидкостные термометры

Жидкостные стеклянные

Очень дешевые

Малая механическая прочность, нет дистанцион- ности

Лабораторные термометры, бытовые термометры

Жидкостные манометрические

Дешевые, надежные, не требуют внешних источников энергии; дистан- ционность до 50 м, большие перестановочные усилия

Температура соединительного капилляра влияет на показания прибора

Промышленные термометры, термореле

Конденса ционные манометри ческие

Нелинейная статическая характеристика

Газовые термометры

С гелиевым заполнением

Принцип измерения соответствует определению термодинамической температуры

Малая механическая прочность, большая трудоемкость процесса измерения

Поверочные (калибровочные) работы

Конструктивно подразделяются на палочные (рис. 2.90, а) и технические со вложенной шкалой (рис. 2.90, б). Принцип их действия основан на зависимости между температурой и объемом термометрической жидкости, заключенной в стеклянной оболочке. Жидкостный термометр состоит из стеклянной оболочки 1, капиллярной трубки 3, запасного резервуара 4 и шкалы 2. Термометрическая жидкость заполняет резервуар и часть капиллярной трубки. Свободное пространство в капилляре заполняется инертным газом или из него удаляется воздух.



Рис. 2.90. :


а - палочный; б - технический со вложенной шкалой; 1 - стеклянная оболочка; 2 - шкала; 3 - капиллярная трубка; 4 - запасной резервуар

В качестве термометрической жидкости применяют органические заполнители: толуол, этиловый спирт, керосин, пентан. Наиболее широкое распространение получили термометры с ртутным наполнением. Это объясняется свойствами ртути находиться в жидком состоянии в широком диапазоне температур и не смачивать стекло, что позволяет использовать капилляры с небольшим диаметром канала (до 0,1 мм) и обеспечивать высокую точность измерения. Так, ртутные образцовые термометры 1-го разряда имеют погрешность 0,002...2°С.


Органические заполнители характеризуются более низкой температурой применения, меньшей стоимостью, большей погрешностью измерения.


Стеклянные термометры в зависимости от назначения и области применения подразделяются на образцовые, лабораторные, технические, бытовые, метеорологические.


Лабораторные термометры обеспечивают измерение в интервале температур 0...500°С, который разбит на четыре диапазона, что позволяет получить погрешность измерений, не превышающую ±0,01 °С (0... 60 °С); ±0,02 °С (55... 155 °С); ±0,05°С (140...300 °С) и ±0,1 °С (300...500°С).


В качестве технических применяют только термометры со вложенной шкалой, которые имеют две модификации: прямые и угловые. Допускаемая погрешность обычно равна цене деления. При стационарной эксплуатации в различных точках технологических агрегатов термометры устанавливают в специальных металлических защитных чехлах (кожухах).


Для обеспечения задач позиционного регулирования и сигнализации в лабораторных и промышленных установках применяют специальные электроконтактные технические термометры двух типов:


1) с постоянными впаянными контактами, которые обеспечивают замыкание и размыкание электрических цепей при одной, двух или трех заранее заданных температурах;


2) с одним подвижным контактом (перемещается внутри капилляра с помощью магнита) и вторым неподвижным, впаянным в капилляр, что обеспечивает замыкание и размыкание электрической цепи при любом значении выбранной температуры.


Перемещающаяся в капилляре ртуть размыкает или замыкает цепи между контактами, к которым подводится напряжение постоянного или переменного тока и нагрузка на которые не должна превышать 0,5 мА при напряжении не более 0,3 В.


Биметаллические и дилатометрические термометры основаны на свойстве твердых тел в различной степени изменять свои линейные размеры при изменении их температуры.


В основном металлы и их сплавы относятся к материалам с высоким температурным коэффициентом линейного расширения. Так, для латуни он равен (18,3...23,6)*10 -6 °С -1 , для никелевой стали 20*10 -6 °С -1 . В то же время есть сплавы, имеющие низкий коэффициент линейного расширения: сплав инвар - 0,9*10 -6 °С -1 , плавленый кварц - 0,55*10 -6 °С -1 .


На рис. 2.91, а представлена конструкция биметаллического термометра, в котором в качестве термочувствительного элемента используется двухслойная пластинка, состоящая из металлов с существенно различными коэффициентами линейного расширения: латуни 1 и инвара 2. При увеличении температуры свободный конец пластины будет изгибаться в сторону металла с меньшим коэффициентом, по величине этого перемещения судят о температуре.


Данный тип устройств часто используется как термореле в системах сигнализации и автоматического регулирования, а также в качестве температурных компенсаторов в измерительных устройствах, например в радиационных пирометрах, манометрических термометрах и т. п.


На рис. 2.91, б приведена конструкция чувствительного элемента пневматического дилатометрического преобразователя температуры.





Рис. 2.91. :


а - биметаллический: 1 - латунь; 2 - инвар; б - дилатометрический: 1 - корпус; 2 - стержень; 3 - трубка; 4 - шарик; 5 - толкатель; 6 - пружина; 7 - преобразователь

В корпусе 1, изготовленном из латуни (нержавеющей стали) расположены трубка 3 и стержень 2, выполненный из инвара (кварца). Стержень 2 через трубку 3 и толкатель 5 с помощью пружины 6 постоянно поджимается к нижнему концу корпуса 1. Шарик 4 исключает появление люфтов между стержнем и компенсационной трубкой, которая выполнена также из латуни и предназначена для исключения температурной погрешности при установке на объектах с различной толщиной тепловой изоляции. Изменение разности удлинений корпуса 1 и стержня 2, пропорциональное изменению температуры измеряемой среды, трансформируется в пневматический сигнал в преобразователе 7, усиливается и поступает на регистрирующий прибор.


Дилатометрические преобразователи выпускают и с электрическим выходным сигналом. Класс точности устройств 1,5 и 2,5 с диапазоном измеряемых температур от -30 до +1000 °С.


Жидкостные манометрические термометры (рис. 2.92) основаны на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Термосистема состоит из термобаллона 4, капилляра 5 и манометрической одно- или многовитковой пружины 6. Капилляр 5 соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 7, поводок 3, сектор 2 связан со стрелкой прибора 1.




Рис. 2.92. :


1 - стрелка; 2 - сектор; 3 - поводок; 4 - термобаллон; 5- капилляр; 6 - пружина; 7 - шарнирное соединение


При изменении температуры среды изменяется давление термометрического вещества в замкнутом пространстве, в результате чего чувствительный элемент (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное перемещение преобразуется в поворот регистрирующей стрелки относительно шкалы прибора.


В зависимости от термометрического вещества манометрические термометры подразделяются на газовые, конденсационные и жидкостные.


В газовых термометрах термобаллон, капилляр и манометрическая пружина заполняются каким-либо инертным газом (азотом, гелием и др.). Диапазон измерения весьма широк и лежит в пределах от критической температуры газа (азот - 147 °С, гелий - 267 °С) до температуры, определяемой теплостойкостью материала термобаллона.


В конденсационных термометрах насыщенные пары некоторых низкокипящих жидкостей (ацетон, метилхлорид, этилхлорид) меняют давление при изменении температуры. Диапазон измерения этих приборов от 0 до +400 °С при погрешности измерений ±1 %.


В жидкостных термометрах термосистема заполнена хорошо расширяющейся жидкостью (ртутью, керосином, лигроином и др.). Диапазон измерения этих приборов от -30 до +600 °С при погрешности измерений ±1 %.


На показания манометрических термометров значительное влияние оказывают внешние условия: изменения температуры окружающего воздуха, различная высота расположения термобаллона и пружины, колебания атмосферного давления.


Манометрические термометры имеют ограниченную длину линии связи от термобаллона к показывающему прибору, большую инерционность и динамическую погрешность.


Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.


Манометрические термометры применяют для измерения температуры охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для заправки и т. п.


Термометры сопротивления .


Термометр сопротивления состоит из чувствительного элемента в виде терморезистора, защитного чехла и соединительной головки.


Принцип действия чувствительного элемента основан на использовании зависимости электрического сопротивления вещества от температуры. В качестве материалов для их изготовления используют чистые металлы: платину, медь, никель и полупроводники. Платина является основным материалом для изготовления термометров сопротивления. В качестве чувствительного элемента в полупроводниковых термометрах сопротивления используют германий, окиси меди и марганца, титана и магния.


Основные метрологические характеристики термометров сопротивления, их принципиальные схемы, преимущества, недостатки и область применения представлены в табл. 2.19.


Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Характеристики

Термометры сопротивления

металлические

полупроводниковые

стандартные

в тонком чехле

Пределы измерений, °С

Погрешность измерения, %

Инерционность

Преимущества

Высокая точность, линейная статическая характеристика

Высокая чувствительность, возможны измерения в точке

Дешевые, хорошая линейность статической характеристики

Прочность, малая тепловая инерция, линейная статическая характеристика

Недостатки

Невозможно измерение температуры в точке

Нелинейная статическая характеристика, большой разброс параметров, низкая стабильность параметров во времени

Большая тепловая инерция

Не известны

Область применения

Энергетика, непрерывные технологические процессы в химии, пищевая промышленность

Энергетика, технологические процессы в химии, производство искусственных материалов, медицина

Энергетика, непрерывные производства, пищевая промышленность

Энергетика, непрерывные производства, химия, медицина, строительство, производство искусственных материалов

Для решения различных задач термометры сопротивления подразделяются на эталонные, образцовые и рабочие, которые, в свою очередь, подразделяются на лабораторные и технические.


Эталонные термометры сопротивления предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13,81... ...903,89 К. В качестве эталонных, образцовых и лабораторных приборов повышенной точности применяют платиновые термометры сопротивления.


Технические термометры сопротивления в зависимости от конструкции подразделяются: на погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го класса точности и т.д.


Одна из конструкций промышленных термометров сопротивления, используемых для измерения температур жидких и газообразных сред, представлена на рис. 2.93, а. Термометр состоит из чувствительного элемента 5, расположенного в стальном защитном кожухе 3, на котором приварен штуцер 2. Провода 9, армированные фарфоровыми бусами 4, соединяют выводы чувствительного элемента 5 с клеммной колодкой б, находящейся в корпусе головки 1. Сверху головка 1 закрыта крышкой 10, снизу имеется сальниковый ввод 7, через который осуществляется подвод монтажного кабеля 8.


Чувствительный элемент термометра сопротивления (рис. 2.93, б) выполнен из металлической тонкой проволоки толщиной 0,03...0,1 мм с безындукционной каркасной или бескаркасной намоткой.





Рис. 2.93. :

а - конструкция термометра: 1 - корпус головки; 2 - штуцер; 3 - защитный кожух; 4 - фарфоровые бусы; 5 - чувствительный элемент; 6 - клеммная колодка; 7 - сальниковый ввод; 8 - монтажный кабель; 9 - провода; 70 - крышка; б - конструкция чувствительного элемента термометра: 1 - глазурь; 2 - пространство; 3 - каркас; 4 - платиновые спирали; 5 - выводы


В качестве каркаса для платиновых термометров применяют плавленный кварц и керамику на основе окиси алюминия. В каналах каркаса 3 расположены четыре (или две) последовательно соединенные платиновые спирали 4. К верхним концам спиралей припаяны выводы 5, выполненные из платины или сплава иридия с радием. Пространство 2 между спиралями и каркасом заполнено порошком окиси алюминия. Крепление спиралей и выводов в каркасе производится глазурью 1.


При применении термометров сопротивления о температуре можно судить по изменению электрического сопротивления его чувствительного элемента, падению напряжения на нем при постоянном токе или значению тока при постоянном напряжении.


Наибольшее распространение получила первая схема, когда изменение сопротивления служит мерой температуры (рис. 2.94). В этом случае терморезистор 1 включают в одну из диагоналей моста последовательно с регулировочным резистором Rv, служащим для приведения к определенному значению сопротивления подводящих проводов. Показания гальванометра 3, включенного в диагональ моста, зависят также от напряжения питания моста, для поддержания постоянства которого в цепь питания включен регулировочный резистор.




Рис. 2.94. :


1 - терморезистор (термометр сопротивления); 2 - уравнительный резистор RA; 3 - гальванометр; 4 - измерительный мост с резисторами Rv, R2, R3, Я4, RA; 5 - источник питания; 6 - регулировочный резистор Rv

Термоэлектрические термометры состоят из термопары, защитного чехла и соединительной головки, они основаны на термоэлектрических свойствах чувствительного элемента.


Сущность термоэлектрического метода заключается в возникновении электродвижущей силы в спае двух разнородных проводников (например, хромель - копель), температура которого отличается от температуры вторых выводов. Для получения зависимости термоЭДС от одной температуры t2 необходимо температуру t1 поддерживать на постоянном уровне, обычно при 0 или +20 °С. Спай, помещаемый в измеряемую среду, называют горячим, или рабочим, концом термопары, а спай, температуру которого поддерживают постоянной, - холодным, или свободным, концом.


Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные - при известной и постоянной температуре t1.


Основные метрологические характеристики термоэлектрических термометров, их принципиальные схемы, преимущества, недостатки и область применения см. в табл. 2.19.


В качестве термопар (ТП) наиболее часто применяют комбинации материалов, имеющих высокое значение развиваемой термо- ЭДС, стабильность характеристик при различных температурах, воспроизводимость и линейную зависимость термоЭДС от температуры, простоту технологической обработки и получения спая, а именно: хромель-копелевые (TBP), хромель-алюмелевые (TXK)[L], платинородий-платиновые (ТХА)[К], вольфрам-рениевые (Tnn)[S] и др. В квадратных скобках приведены условные обозначения номинальных статистических характеристик преобразования. Наиболее точной является термопара ТПП, которая используется в качестве рабочих эталонов и образцовых термометров 1-го, 2-го и 3-го разряда.


Основные характеристики термоэлектрических термометров представлены в табл. 2.20.


Таблица 2.20. Основные характеристики термоэлектрических термометров

Термопара

Градуировка

Химический состав термоэлектрода

Пределы применения, C

Пределы допускаемой погрешности, С, при температуре, С

положительного

отрицательного

Стандартной градуировки

Платино-родий-платиновая

(ТПП)

Платинородий (90% Pt+10% Rh)

Платина (100% Pt)

Платино-родий-платино-родиевая

(ТПР)

Платинородий (70% Pt + 30% Rh)

Платинородий

Хромель- алюмелевая (ТХА)

Хромель (89% Ni + 9,8 % Сг +

1% Fe + 0,2% Mn)

(94 % Ni + 2 % А1 + 2,5 % Mn + + 1 % Si + 0,5% Fe)

Хромель-копелевая

(ТХК)

(55 % Си + 45 % Ni)

Вольфрам-рениевая

(ТВР)

Вольфрам-рений (95 % W + 5 % Re)

Вольфрам-рений

(80% W + 20% Re)

1,33 ±0,03 (1,40 ± 0,03)

Нестандартной градуировки

Вольфрам-рениевая

Вольфрам-рений (90 %W + 10% Re)

Вольфрам-рений

Вольфрам-молибденовая

Вольфрам (100% W)

Молибден (100% Mo)

Молибден-алюминий

(99,5 % Mo + 0,5 % Al)

Медь константа-новая

Медь (100% Си)

Константан (42% Ni + 58% Cu)

На рис. 2.95 показана конструкция термоэлектрического термометра. Термопара 7 установлена в защитный кожух 6. В головке 2 термометра расположено контактное устройство 1 с зажимами для соединения термоэлектродов 3 с проводами, идущими от измерительного прибора к термометру. Термоэлектроды по всей длине изолированы друг от друга и от корпуса керамическими трубками 5. В качестве термоэлектродов используют проволоку диаметром 0,3...0,5 мм.




Рис. 2.95. :


1 - контактное устройство; 2 - головка; 3 - термоэлектроды; 4 - штуцер; 5 - керамические трубки; В - защитный кожух; 7 - термопара


Спай на рабочем конце термопары 7 образуется сваркой, пайкой или скручиванием. Последний способ используется для вольфрам-рениевых и вольфрам-молибденовых термопар.

Для измерения возникающей термоЭДС в контур термопары в холодный спай (рис. 2.96, а) или в разрыв одного из термоэлектродов (рис. 2.96, б) с помощью проводов С включают измерительный прибор ИП. В первом случае (см. рис. 2.96, а) в схеме присутствуют три спая: горячий 2 и два холодных (1 и 3), во втором случае (см. рис. 2.96, б) в схеме - четыре спая: горячий 4, холодный 1 и нейтральные 2 и 3, причем температура последних t3 должна быть одинаковой.





Рис. 2.96. :


а: 1 и 3 - холодные спаи; 2 - горячий спай; 6: 1- холодный спай; 2 и 3 - нейтральные спаи; 4 - горячий спай

В схеме уравновешивающего преобразования (рис. 2.97) уравновешивание ЭДС термопары осуществляется за счет сигнала с мостовой схемы, управляемой двигателем Д.





Рис. 2.97. :


R1-R8 - сопротивления компенсационного моста; R1, R3 - терморезисторы; R9, R10 - сопротивления делителя напряжения; ТП - термопары; С - конденсатор; У - усилитель; Д - двигатель; ОУ- отсчетное устройство излучения

Компенсация методических погрешностей в термоэлектрических термометрах, обусловленных изменением температуры холодного спая, осуществляется путем применения мостовых схем с термосопротивлением, питаемых стабилизированным постоянным напряжением.

Бесконтактное измерение температуры .


О температуре нагретого тела можно судить на основании измерения параметров его теплового излучения, представляющего собой электромагнитные волны различной длины. Термометры, действие которых основано на измерении теплового излучения, называются пирометрами. Они позволяют измерять температуру в диапазоне от 100 до 6000 °С и выше.


Физические тела характеризуются либо непрерывным спектром излучения (твердые и жидкие вещества), либо избирательным (газы). Участок спектра в интервале длин волн 0,02...0,4 мкм соответствует ультрафиолетовому излучению, участок 0,4... 0,76 мкм - видимому излучению, участок 0,76... 400 мкм - инфракрасному излучению. Интегральное излучение - это суммарное излучение, испускаемое телом во всем спектре длин волн.


Монохроматическим называется излучение, испускаемое при определенной длине волны.


На основании законов излучения разработаны пирометры следующих типов:


Суммарного (полного) излучения, в которых измеряется полная энергия излучения;


Частичного излучения (квазимонохроматические), в которых измеряется энергия в ограниченном фильтром (или приемником) участке спектра;


Спектрального отношения, в которых измеряется интенсивность излучения фиксированных участков спектра.


В пирометрах полного излучения оценивается не менее 90 % суммарного потока излучения источника. При измерении температуры реального тела пирометры этого типа показывают не действительную, а так называемую радиационную температуру тела.


Поэтому эти пирометры называются радиационными. При известном суммарном коэффициенте черноты тела возможен пересчет с радиационной температуры тела на его действительную температуру. Исходя из этого, пирометры полного излучения удобно использовать при измерениях разностей температур в неизменных условиях наблюдения в диапазоне 100...3 500°С. Основная допустимая погрешность в технических пирометрах возрастает с увеличением верхнего предела измерения температуры. Так, для 1000 °С - ±12 %, для 2000 °С - ±20 %.



Рис. 2.98. :


1 - линза; 2 - диафрагма; 3 - приемник излучения; 4 - окуляр; 5 - фильтр; ОУ - отсчетное устройство


В радиационном пирометре (рис. 2.98) лучи нагретого тела поступают на линзу 1, которая направляет их через диафрагму 2 на приемник излучения 3. Приемник излучения состоит из большого числа термопар (термобатарея), горячие спаи которых выполнены в виде секторных тонких пластинок. Сигнал с термопар, соединенных последовательно, подается на отсчетное устройство ОУ. Через окуляр 4 с фильтром 5 производится наведение пирометра на объект измерения. Основные метрологические характеристики приемников полного излучения, их принципиальные схемы, основные преимущества, недостатки и область применения представлены в табл. 2.21.

Таблица 2.21. Основные метрологические характеристики приемников полного излучения

Таблица 2.21. Основные метрологические характеристики приемников полного излучения

Характеристики

Электрические

Пневматические

Оптические

Термобатареи

Болометры

Тепловые быстродействующие индикаторы

Пироэлектрические кристаллы

Детектор Голея

Жидкие кристаллы

Пределы измерения

Теоретически не ограничены, зависят от конструкции

Чувствительность

10 0 В * Вт -1

10 -4 В Вт -1

Инерционность, с

Преимущества

Высокая временная стабильность

Большая по сравнению с термобатареями чувствительность

Малая тепловая инерция

Малая тепловая инерция, широкий частотный диапазон

Чрезвычайно широкий частотный диапазон

Большая разрешающая способность (10-3 К)

Недостатки

Большая по сравнению с болометрами инерционность

Необходимость источника питания, собственное нагревание

Малая чувствительность

Исчезновение поляризации выше точки Кюри

Невозможны статические измерения

Высокая инерционность

Область применения

Пирометрия, спектроскопия, радиометрия

Обнаружение лазерного излучения

Пирометрия, спектрометрия, регистрация температурных полей

Спектрометрия

Медицина, исследования

Они подразделяются на электрические (термобатареи, болометры, тепловые индикаторы, пироэлектрические кристаллы), пневматические (детектор Голея) и оптические (жидкие кристаллы). Наибольшая чувствительность (10 5 В*Вт -1) у пневматических приемников. У электрических она составляет от 10 -4 до 10 3 В*Вт -1 .

Температура является одной из важнейших физических величин, оцениваемых в системах автоматизации водоснабжения и водоотведения. Современные методы и средства измерения температуры основаны на физических свойствах жидкостей, газов. Твердых тел. Проявляемых при изменении температуры. В настоящее время используются электрические и неэлектрические методы измерения температуры.

Технические средства автоматизации ТСА предназначенные для измерения температуры называются термометрами .

Классификация приборов для измерения температуры:

1. Термометры расширения – действие основано на изменении линейных размеров и объема жидких и твердых тел при изменении температуры.

2. Манометрические термометры – действие основано на изменении давления рабочего вещества от температуры при постоянном объеме.

3. Термоэлектрические преобразователи (ТЭП), термопары – действие основано на зависимости термоэлектродвижущей силы (ТЭДС) от температуры.

4. Термометры сопротивления – действие основано на зависимости электрического сопротивления чувствительного элемента от температуры.

5. Пирометры излучения – действие основано на зависимости температуры от яркости излучения.

Термометры расширения

Построены на принципе изменения объема жидкости (жидкостные) или линейных размеров твердых тел (деформационные) при изменении температуры.

Действие жидкостных стеклянных термометров основано на различии коэффициентов теплового расширения термометрического вещества (ртуть, спирт или другие органические жидкости) и оболочки, в которых оно находится (термометрическое стекло или кварц). Такие термометры, как правило, используются в промышленности и в лабораторной практике для местных измерений температуры в пределах от -200°С до 600°С с высокой точностью. Цена деления, например, образцовых стеклянных термометров с узким диапазоном шкалы может составлять 0,01 °С.

Изготавливаются лабораторные термометры типа ТЛ на пределы измерения от -100°С до 500 °С; термометры промышленные типа ТП на пределы от -30°С до 500 °С; термометры технические типа ТТ на те же пределы и др.

Основные достоинства жидкостных стеклянных термометров – простота и высокая точность измерения; недостатки – невозможность, регистрации и передачи показаний на расстояние, значительная тепловая инерция, невозможность ремонта.

Деформационные делятся на биметаллические и дилатометрические. Их действие основано на термометрическом свойстве теплового расширения различных твердых тел.

Манометрические термометры

Манометрический термометр (рис. 32) состоит из термобаллона 1, капиллярной трубки 2 и манометрической части 3-7. Вся система прибора (термобаллон, капиллярная трубка, манометрическая пружина) заполнена рабочим веществом. Термобаллон, изготавливаемый в виде цилиндра из стали или латуни, помещают в контролируемую среду. При нагревании термобаллона давление рабочего вещества внутри замкнутой системы увеличивается. Увеличение давления воспринимается манометрической трубкой (пружиной), которая воздействует через передаточный механизм на стрелку или перо прибора. Капилляр изготовляют из медной или стальной трубки с внутренним диаметром 0,15–0,5 мм. В зависимости от назначения прибора длина капиллярной трубки может быть различной и находится обычно в пределах следующего ряда: 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40 и 60 м. Капиллярная трубка может быть одно- и многовитковой. Иногда капилляр может отсутствовать, и термобаллон непосредственно соединяют с манометрической частью. Для защиты от механических повреждений капилляр помещают в защитную оболочку из стального плетеного рукава.

Рис. 32. Манометрический термометр с трубчатой пружиной:

1 – термобаллон; 2 – капиллярная трубка; 3 – манометрическая трубка (пружина); 4 – держатель; 5 – поводок; 6 – зубчатый сектор; 7 – биметаллический компенсатор

Манометрические термометры широко применяют в химических производствах. Они просты по устройству, надежны в работе, при отсутствии электропривода диаграммы – взрыво- и пожаробезопасны. С помощью этих приборов можно измерять температуру в диапазоне от -150 до +600 °С.

Различают следующие типы манометрических термометров:

Газовые, в которых вся система заполнена газом под некоторым начальным давлением;

Жидкостные, в которых система заполнена жидкостью;

Конденсационные, в которых термобаллон частично заполнен низкокипящей жидкостью, а остальное пространство термобаллона заполнено парами этой жидкости.

По устройству манометрические термометры всех типов аналогичны. Они бывают показывающими, регистрирующими и контактными.

Газовые МТ заполняются азотом, гелием применяются для измерения температуры от -60 до +600 0 С.

Достоинства: равномерная шкала; статистические характеристики линейны.

У жидкостных МТ всю систему заполняют жидкостью (метиловый спирт, ксилол, толуол, ртуть и т.д.) под начальным давлением 1,5-2 МПа. Применяются для измерения температуры от -60 до +300 0 С.

Достоинства: те же, как у газовых МТ.

Недостатки: значительные температурные погрешности.

Манометрические конденсационные термометрыреализуют зависимость упругости насыщенных паров низкокипящей жидкости от температуры. Поскольку эти зависимости для используемых жидкостей (хлористый метил, этиловый эфир, хлористый этил, ацетон и др.) нелинейны, следовательно, и шкалы термометров неравномерны. Эти приборы обладают более высокой чувствительностью, т.к. давление насыщенного пара очень быстро изменяется с температурой. Диапазон измерения температуры от -50 до +300 °С.

Недостатки: погрешности при измерении атмосферного давления.

Термопреобразователи сопротивления (ТС)

Измерение температуры ТС основано на изменении электрического сопротивления проводников или полупроводников с изменением температуры. Зная эту зависимость, можно по значению сопротивления определить температуру среды, в которую помещен ТС. При увеличении температуры сопротивление ряда чистых металлов возрастает, а полупроводников снижается.

Зависимость сопротивления металлов от температуры в небольшом интервале температур можно приближенно выразить уравнением:

,

где – сопротивление металлического проводника при температуре t °C; - сопротивление того же проводника при температуре 0 0 C; – температурный коэффициент электрического сопро­тивления, 1/ 0 C.

Зависимость между сопротивлением и температурой для ТС различных типов дается в градуировочных таблицах.

Для изготовления ТС наиболее пригодны по своим физико-химическим свойствам платина и медь. Для платины ; для меди .

Чувствительные элементы ТС представляют собой тонкую медную или платиновую проволоку, намотанную бифилярно на специальный слюдяной, фарфоровый или пластмассовый каркас. Для предохранения от внешних воздействий чувствительные элементы ТС заключают в металлическую трубку с литой головкой, в которой смонтированы выводы концов обмотки для их подключения к соединительным проводам (рис. 33).

Рис. 33. Платиновый (а) и медный (б) ТС:

1 – серебряная лента; 2 – платиновая проволока; 3 –слюдяная пластинка; 4 – подводящие серебряные провода; 5 – фарфоровые бусы; 6 – пластмассовая головка; 7 – тонкостенна защитная трубка; 8 – защитный чехол; 9 – медная проволока; 10 – пластмассовый каркас; 11 – медные подводящие провода

Термопреобразователи сопротивления изготавливают следующих типов: ТС медные (ТСМ) на пределы от –50 до 200 °С; ТС платиновые (ТСП) на пределы от –260 до 750 °С.

Перспективные средства измерения температуры:

1. Термопреобразователи с унифицированным выходным сигналом: ТСМУ Метран-274 на пределы от –50 до 200 °С, ТСПУ Метран-276 на пределы от –200 до 500 °С. У них чувствительный элемент первичного преобразователя и встроенный в головку датчика термический преобразователь преобразуют измеряемую температуру в унифицированный сигнал постоянного тока

2. Термопреобразователи микропроцессорные: ТСМУ Метран-274МП, ТСПУ Метран-276МП.

3. Интеллектуальные преобразователи температуры: Метран-281 и метран-286 – управляемые интеллектуальные преобразователи, работают дистанционно (оператор может произвести настройку, выбор основных параметров, перенастройка и запрос информации о самом преобразователе). На выходе имеют унифицированный сигнал 4 – 20 мА.

Термоэлектрические преобразователи

В основу действия положен термоэлектрический эффект, заключающийся в том, что в замкнутой цепи, состоящей из двух или нескольких разнородный проводников, возникает электрический ток, если хотя бы 2 соединения (спая) проводников имеют разные температуры.

Конструктивно ТЭП представляет собой две проволоки (А и В) из разнородных металлов, нагреваемые концы которых скручиваются, а затем свариваются или спаиваются (рис. 34). Спай, имеющий температуру t, называется рабочим, помещается в контролируемую среду, а с температурой t o – свободным.

А
В
t o
t

Рис. 34. Термоэлектрическая цепь из двух разнородных проводников

Суммарную термоэлектродвижущую силу (ТЭДС) замкнутой цепи ТЭП, спаи которой нагреты до температур t и t 0 можно выразить уравнением:

где E AB (tt 0) – суммарная ТЭДС ТЭП; e AB (t ), e AB (t 0) – потенциалы, возникающие в спаях.

Поддерживая температуру одного из спаев постоянной, например , получаем .

Для устранения влияния изменения температуры окружающей среды на величину возникающей ТЭДС свободные концы ТЭП термостатируют или применяют специальные компенси­рующие устройства. Для измерения ЭДС в цепь термопары включают вторичный прибор (милливольтметр и потенциометр). Его подключают в спай с температурой t o либо в один из термоэлектродов. ТЭДС термопары не изменяется от введения в ее цепь вторичного прибора, если свободные спаи имеют одинаковую температуру и провода, которыми подключается вторичный прибор, изготовлены их материала, отличного от материалов электродов А и В.

В соответствии с общепринятой международной классификацией термоэлектрические преобразователи (термопары) разделяются на несколько типов в зависимости от применяемых материалов и характеристик. Характеристики некоторых основных типов ТП приведены в табл. 1.

Одним из параметров, наиболее часто подлежащих контролю и регулированию для корректного протекания технологического процесса, является температура. Температурой называют величину, характеризующую степень нагретости вещества. Это понятие связано со способностью тела с более высокой температурой передавать свое тепло телу с более низкой температурой. Переход тепла продолжается до тех пор, пока температуры тел не сравняются и не наступит термодинамическое равновесие системы. Одновременно с переходом тепла и изменением температуры тел меняются их физические свойства. Единица измерения температуры носит название «градус».

Классификация средств измерений температуры.

Приборы для измерения температуры разделяются в зависимости от физических свойств, положенных в основу их построения, на следующие группы:

Термометры расширения;

Манометрические термометры;

Электрические термометры сопротивления;

Термоэлектрические преобразователи (термопары);

Пирометры излучения.

Термометры. Решающий вклад в развитие конструкции термометров внёс немец Габриэль Даниэль Фаренгейт. В 1709 году он изобрёл спиртовой термометр, а в 1714 - ртутный. Он придал им ту же форму, что применяется и сейчас. Успех его термометров следует искать во введенном им новом методе очищения ртути; кроме того, перед запаиванием он кипятил жидкость в трубке.

Рене Антуан де Реомюр не одобрял применения ртути в термометрах вследствие малого коэффициента расширения ртути. В 1730 г. он предложил применять в термометрах спирт, а в 1731 году изобрёл водно-спиртовой термометр. И поскольку Реомюр нашел, что применяемый им спирт, смешанный в пропорции 5:1 с водой, расширяется в отношении 1000:1080 при изменении температуры от точки замерзания до точки кипения воды, то предложил шкалу от 0 до 80°.

Температурные шкалы.

Существует несколько градуированных температурных шкал, и за точки отсчета в них обычно взяты температуры замерзания и кипения воды. Сейчас самой распространенной в мире является шкала Цельсия. В 1742 шведский астроном Андерс Цельсий предложил 100-градусную шкалу термометра, в которой за 0 градусов принимается температура кипения воды при нормальном атмосферном давлении, а за 100 градусов - температура таяния льда. Деление шкалы составляет 1/100 этой разницы. Когда стали использовать термометры, оказалось удобнее поменять местами 0 и 100 градусов. Возможно, в этом участвовал Карл Линней (он преподавал медицину и естествознание в том же Упсальском университете, где Цельсий - астрономию), который еще в 1838 году предложил за 0 температуры принять температуру плавления льда, но, похоже, не додумался до второй реперной точки. К настоящему времени шкала Цельсия несколько изменилась: за 0°C по-прежнему принята температура таяния льда при нормальном давлении, которая от давления не очень зависит. Зато температура кипения воды при атмосферном давлении теперь равна 99,975°C, что не отражается на точности измерения практически всех термометров, кроме специальных прецизионных.

Известны также температурные шкалы Фаренгейта, Кельвина, Реомюра и др. Температурная шкала Фаренгейта (во втором варианте, принятом с 1714 г.) имеет три фиксированные точки: 0° соответствовал температуре смеси воды, льда и нашатыря, 96° - температуре тела здорового человека (под мышкой или во рту). В качестве контрольной температуры для сверки различных термометров было принято значение 32° для точки таяния льда. Шкала Фаренгейта широко распространена в англоязычных странах, но ею почти не пользуются в научной литературе. Для перевода температуры по Цельсию (°С) в температуру по Фаренгейту (°F) существует формула °F = (9/5)°C + 32, а для обратного перевода - формула °C =(5/9)(°F-32). Обе шкалы - как Фаренгейта, так и Цельсия, - весьма неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды и выражается отрицательным числом. Для таких случаев были введены абсолютные шкалы температур, в основе которых лежит экстраполяция к так называемому абсолютному нулю - точке, в которой должно прекратиться молекулярное движение. Одна из них называется шкалой Ранкина, а другая - абсолютной термодинамической шкалой; температуры по ним измеряются в градусах Ранкина (°Rа) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля, а точка замерзания воды соответствует 491,7° R и 273,16 K. Число градусов и кельвинов между точками замерзания и кипения воды по шкале Цельсия и абсолютной термодинамической шкале одинаково и равно 100; для шкал Фаренгейта и Ранкина оно тоже одинаково, но равно 180. Градусы Цельсия переводятся в кельвины по формуле K = °C + 273,16, а градусы Фаренгейта - в градусы Ранкина по формуле °R = °F + 459,7. в Европе долгое время была распространена шкала Реомюра, введённая в 1730 г Рене Антуаном де Реомюром. Она построена не произвольным образом, как шкала Фаренгейта, а в соответствии с тепловым расширением спирта (в отношении 1000:1080). 1 градус Реомюра равен 1/80 части температурного интервала между точками таяния льда (0°R) и кипения воды (80°R), т. е. 1°R = 1.25°С, 1°C = 0.8°R., но в настоящее время вышла из употребления.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы.

Первая шкала - термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Единицей измерения температуры в этой температурной шкале является один кельвин (1К) - одна из основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия.

Вторая рекомендованная температурная шкала - международная практическая. Эта шкала имеет 11 реперных точек - температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина - легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Таблица 4.1.

Соотношение температурной шкалы Фаренгейта и Цельсия

Рассмотрим более подробно средства измерения температуры.

Термометры расширения.

Предназначены для изменения температур в диапазоне от -190 до +500 градусов Цельсия. Принцип действия термометров расширения основан на свойстве тел под действием температуры изменять объем, а следовательно, и линейные размеры. Термометры расширения разделяются на жидкостные стеклянные и механические (дилатометрические и биметаллические).

В качестве термометрической жидкости в жидкостных стеклянных термометров применяется ртуть, этиловый спирт, керосин, толуол, пентан.

Механические термометры.

Принцип действия дилатометрических термометров основан на преобразовании изменений температуры в разность удлинений двух твердых тел, обусловленную различием их температурных коэффициентов линейного расширения. Диапазон измерения температур составляет от -30 до +1000°С.

Принцип действия биметаллического термометра основан на использовании в его чувствительном элементе двух металлов с различными температурными коэффициентами линейного расширения. Металлические пластины прочно соединяются между собой, в основном путем сварки, и образуют биметаллическую пружину, которая при нагревании расширяется и замыкает контакт или вращает стрелку термометра.

Примерная схема биметаллического электрического контроллера, который применяется в холодильных камерах выглядит следующим образом:

На этом рисунке серый металл расширяется сильнее, чем синий. При повышении температуры это расширение заставляет пластину cгибаться вверх, соприкасаться с контактом, для того, чтобы потек ток по пластине и включился компрессор. Регулируя размер промежутка между пластиной и контактом, можно управлять температурой внутри камеры.

Биметаллические термометры могут быть различных типов. В самой распространенной конструкции длинная свёрнутая спиралью лента из биметалла закрепляется в центре. Другой (внешний) конец спирали перемещается вдоль шкалы, размеченной в градусах. Такой термометр, в отличие от жидкостного (например, ртутного) совершенно нечувствителен к изменениям внешнего давления и механически более прочен. Диапазон измерения температур составляет от -100 до +600°С.

Манометрические термометры предназначены для измерения температуры в диапазоне от -160 до +600 градусов Цельсия.

Принцип действия манометрических термометров основан на изменении давления жидкости, газа или пара, помещенных в замкнутом объеме, при нагревании или охлаждении этих веществ;

Шкала манометра градуируется непосредственно в единицах температуры. Манометрический термометр состоит из термобаллона, гибкого капилляра и собственно манометра. В зависимости от заполняющего вещества манометрические термометры делятся на газовые (термометр ТГП, термометр ТДГ и др.), парожидкостные (термометр ТКП, ТПП) и жидкостные (термометр ТПЖ, термометр ТДЖ и др.). Область измерения температур манометрическими термометрами колеблется в диапазоне от -60 до +600°С. Термобаллон манометрического термометра помещают в измеряемую среду. При нагреве термобаллона внутри замкнутого объема увеличивается давление, которое измеряется манометром. Шкала манометра градуируется в единицах температуры. Капилляр обычно представляет собой латунную трубку с внутренним диаметром в доли миллиметра. Это позволяет удалить манометр от места установки термобаллона на расстояние до 40 м. Капилляр по всей длине защищен оболочкой из стальной ленты. Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на расстояние более 40 м манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами, речь идет о так называемых дистанционных термометрах.

Недостаток. Наиболее уязвимы в конструкции манометрических термометров являются места присоёдинения капилляра к термобаллону и манометру.

Электрические термометры сопротивления применяются для измерения температур в диапазоне от -200 до +650 градусов Цельсия. Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра - платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Принцип действия термометров сопротивления основан на свойстве проводников изменять электрическое сопротивление в зависимости от температуры.

Термоэлектрические преобразователи (термопары) используются при измерения температуры от 0 до +1800 градусов Цельсия. Термопара - старейший и до сих пор наиболее распространенный в промышленности температурный датчик. Действие термопары основано на эффекте, который впервые был открыт и описан Томасам Зеебеком в 1822 г. Наиболее правильное определение этого эффекта следующее: a difference of potential will occur if a homogeneous material having mobile charges has a different temperature at each measurement contact. (Если гомогенный материал, обладающий свободными зарядами, имеет разную температуру на измерительных контактах, то между контактами возникает разность потенциалов). Для нас более привычно обычно приводимое в литературе несколько другое определение эффекта Зеебека - возникновении тока в замкнутой цепи из двух разнородных проводников при наличии градиента температур между спаями. Второе определение, очевидно, следует из первого и дает объяснение принципу работы и устройству термопары. Однако, именно первое определение дает ключ к пониманию эффекта возникновения ТЭДС не в месте спая, а по всей длине термоэлектрода, что очень важно для понимания ограничений по точности, накладываемых самой природой термоэлектричества. Поскольку генерирование ТЭДС происходит по длине термоэлектрода, то показания термопары зависят от состояния термоэлектродов в зоне максимального температурного градиента. Поэтому поверку термопар следует проводить при той же глубине погружения в среду, что и на рабочем объекте. Учет термоэлектрической неоднородности особенно важен для рабочих термопар из неблагородных металлов.

Достоинства:

Широкий диапазон рабочих температур, это самый высокотемпературный из контактных датчиков.

Спай термопары может быть непосредственно заземлен или приведен в прямой контакт с измеряемым объектом.

Простота изготовления, надежность и прочность конструкции.

Недостатки:

Необходимость контроля температуры холодных спаев. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.

Возникновение термоэлектрической неоднородности в проводниках и, как следствие, изменение градуировочной характеристики из-за изменения состава сплава в результате коррозии и других химических процессов.

Материал электродов не является химически инертным и, при недостаточной герметичности корпуса термопары, может подвергаться влиянию агрессивных сред, атмосферы и т.д.

На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Зависимость ТЭДС от температуры существенно не линейна. Это создает трудности при разработке вторичных преобразователей сигнала.

Когда жесткие требования выдвигаются к времени термической инерции термопары, и необходимо заземлять рабочий спай, следует обеспечить электрическую изоляцию преобразователя сигнала для устранения опасности возникновения утечек через землю.

Принцип действия термопар основан на свойстве разнородных металлов и сплавов образовывать в спае термо электродвижущую силу, зависящую от температуры спая.

Пирометры излучения применяются для измерения температуры в диапазоне от +100 до 2500 градусов Цельсия. Пирометры излучения работают по принципу измерения излучаемой нагретыми телами энергии, изменяющейся в зависимости от температуры этих тел. принцип работы которых основан на измерении суммарной энергии или состава излучения нагретого тела. В зависимости от способа измерения различают:

· радиационные,

· оптические,

· фотоэлектрические и

· цветовые пирометры.

Радиационные пирометры. Эти пирометры измеряют полную (световую и тепловую) энергию излучения тела с помощью телескопа и вторичного прибора. Телескоп радиационного пирометра служит бесконтактным датчиком температуры и состоит из оптической системы, в фокусе которой находятся рабочие спаи термобатареи, т. е. нескольких соединенных последовательно термопар. Термобатарея преобразует излучаемую поверхностью нагретого тела энергию в ТЭДС, которая измеряется вторичным прибором. При наличии во вторичном приборе регулирующего устройства радиационный пирометр позволяет автоматически регулировать температуру в объекте (печь, ванна).

Оптические пирометры. Эти пирометры, называемые также яркостными, используют для периодического контроля температуры в печах и ваннах. С их помощью измеряют температуру по монохроматической яркости (интенсивности излучения) тела в видимой области спектра путем сравнения ее с яркостью нити эталонной пирометрической лампочки. Изменением тока накала нити ее яркость доводится до яркости измеряемого тела, при этом нить исчезает на его фоне, так как тело и нить имеют одинаковую температуру.

Фотоэлектрические пирометры. Фотоэлектрические пирометры служат для измерения температуры нагретых твердых тел в пределах от 600 до 2000°С. Их особенно успешно используют для измерения температуры быстропротекающих процессов.

Принцип действия фотоэлектрического пирометра основан на свойстве фотоэлементов вырабатывать фотоэлектрический ток, пропорциональный интенсивности светового потока, который подается на фотоэлемент от излучателя. Так как интенсивность светового потока, в свою очередь, пропорциональна измеряемой температуре излучателя, то при помощи фотоэлементов можно измерять температуру нагретых тел.

Первичным датчиком в пирометре является визирная головка, в ней расположен фотоэлемент 9.

Головка размещена так, что световой поток от излучателя 3, температура которого подвергается измерению, через линзу объектива 4 направляется на фотоэлемент. На пути светового потока, перед фотоэлементом, устанавливается кассета 7 и красный светофильтр 8, пропускающий лучи только определенной длины волны. Кассета имеет два отверстия: через одно пропускается от излучателя световой поток, а через другое - от лампы накаливания 2.

Впереди кассеты расположен электромагнитный вибратор 6, который при помощи заслонки попеременно, с частотой питающего его тока 50 гц, открывает отверстия кассеты, вследствие чего на фотоэлемент попадают попеременно световые потоки то от источника, то от лампы накаливания.

Световой поток от лампы накаливания является эталонным, зависящим по величине только от тока, протекающего по ее нити. Световой поток от излучателя сравнивается со световым потоком от лампы накаливания. В результате этого к электронному усилителю 11 поступает переменное напряжение, величина которого зависит от разности световых потоков лампы накаливания и излучателя.

Это напряжение усиливается сначала в усилителе, расположенном в визирной головке, а затем в силовом блоке 14.

Выходной каскад блока нагружен лампой накаливания, через которую течет постоянный ток, увеличивающийся, если световой поток лампы накаливания меньше светового потока излучателя, и наоборот.

Таким образом, система непрерывно подтягивает значение тока, текущего через лампу, до величины, обеспечивающей равенство световых излучателя и потоков лампы накаливания.

Измеряя ток лампы накаливания, можно определять температуру излучателя. Измерение тока осуществляется быстродействующим электронным потенциометром 12, включенным на шунт в цепи лампы, правильная наводка головки на излучатель - при помощи окуляра 10 и отражателя 5. Прибор имеет разделительный трансформатор 13, стабилизатор напряжения 15, зажимы 16 для подвода питания от сети.

Описанный здесь пирометр допускает установку его на расстоянии 1 м и более от излучателя. Наименьший допустимый диаметр излучателя должен быть всегда несколько больше 1/20 этого расстояния. Пирометры этого типа, но со специальными объективами могут быть использованы для измерения температуры и меньших по размеру объектов, чем пирометры со стандартным показателем визирования.

Цветовые пирометры. Эти пирометры измеряют температуру по отношению интенсивностей монохроматического излучения тела для двух диапазонов длин волн красного и сине-зеленого участков видимой части спектра. Такое отношение характеризует так называемую цветовую температуру, которая совпадает с истинной для абсолютно черного и серых тел. В отечественных цветовых пирометрах использован метод красно-синего отношения. Для измерения обоих монохроматических яркостей используют один приемник излучения (фотоэлемент или фотосопротивление) с общим каналом усиления измеряемых сигналов.

Преимущество метода цветовой пирометрии перед другими бесконтактными оптическими способами измерения температуры состоит в том, что в качестве объекта измерения не обязательно иметь АЧТ. Кроме того, исключается влияние излучений, изменения рельефов поверхности, расстояния от пирометра, неселективных поглотителей лучистой энергии, расположенных между объектом измерения и пирометром (сеток, стекол, диафрагм, призм и т.п.).

Типичными образцами цветовых пирометров являются приборы ЦЭП - 3М и ЦЭП - 4.

Комплект прибора состоит из трех блоков: датчика, блока электроники, включающего усилительную и решающую схемы, показывающего или регистрирующего прибора.

Принцип действия прибора основан на автоматическом измерении логарифма отношения спектральных яркостей в красном и синем участке спектра. Вычислительное устройство автоматически осуществляет логарифмирование отношения яркостей. Логарифм спектрального отношения яркостей пропорционален обратным значениям цветовой температуры.

Измеряемое излучение попадает на фотоэлемент через оптическую систему прибора и через обтюратор, вращаемый синхронным двигателем. Обтюратор выполнен в виде диска с отверстиями, за­крытыми красными и синими светофильтрами таким образом, что при вращении диска на фотоэлемент попеременно попадает то красная, то синяя энергетическая яркость. Импульсы фототока, пропорциональные красной и синей спектральным энергетическим яркостям, усиливаются и подаются на вход измерительной системы. Фотоэлемент термостатирован. Все эти устройства смонтированы в головке прибора. Усиленный ток подается в измерительный блок, в котором после соответствующих преобразований сигнал поступает в электронную логарифмирующую систему, позволяющую получать линейную шкалу.

В головке датчика находятся также устройства для ручной и автоматической регулировки уровня энергетической яркости, индикаторы и органы управления. Для удаления пыли и дыма из поля зрения при измерении температуры открытых объектов в бленду, надеваемую на тубус объектива, подается сжатый воздух. Диапазон измерений температуры составляет 1400--2800°С. Прибор имеет от 3 до 5 поддиапазонов с интервалом 200--400°С. Показания прибора переводятся в градусы Цельсия с помощью градуировочного графика для данного поддиапазона. Градуировку прибора проводят по образцовым температурным лампам. Предельная ошибка измерения цветовой температуры 2000°С равна ±30°С.

В методе бихроматической цветовой пирометрии сигнал для регулирования определяется разностью двух спектральных энергетических яркостей.

Данный метод регулирования цветовой температуры исключает необходимость применения какой-либо схемы или логометра, измеряющего отношение яркостей. На этом принципе работает пирометр РЭД-1, имеющий один фотоэлемент и разделяющий сигналы, пропорциональные соответствующим спектральным энергетическим яркостям во времени, с помощью вращающегося диска со светофильтрами.

Введение

Глава 1. Основные положения и понятия

1 Понятие о температуре и об устройствах измерения температур

1.2 Температурные шкалы

3 Международная температурная шкала

Глава 2. Методы измерения температуры

2.1 Контактный метод измерения температуры

2 Бесконтактный метод измерения температуры

3 Люминесцентные методы измерения температуры

Заключение

Список литературы

Введение

Высокопроизводительная, экономичная и безопасная работа различных технологических агрегатов требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования.

Основными параметрами (величинами), которые необходимо контролировать при работе агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.

Температура является одним из важнейших параметров технологических процессов. Она обладает некоторыми принципиальными особенностями, что обусловливает необходимость применения большого количества методов и технических средств для ее измерения.

.Основные положения и понятия

1 Понятие о температуре и об устройствах измерения температур

Температурой называют величину, характеризующую тепловое состояние тела. Температура может быть определена как параметр теплового состояния. Значение этого параметра обусловливается средней кинетической энергией поступательного движения молекул данного тела. При соприкосновении двух тел, например газообразных, переход тепла от одного тела к другому будет происходить до тех пор, пока значения средней кинетической энергии поступательного движения молекул этих тел не будут равны. С изменением средней кинетической энергии движения молекул тела изменяется степень его нагретости, а вместе с тем изменяются также физические свойства тела. При данной температуре кинетическая энергия каждой отдельной молекулы тела может значительно отличаться от его средней кинетической энергии. Поэтому понятие температуры является статистическим и применимо только к телу, состоящему из достаточно большого числа молекул; в применении к отдельной молекуле оно бессмысленно.

К пространству со значительно разреженной материей статистические законы неприменимы. Температура в этом случае определяется мощностью потоков лучистой энергии, пронизывающей тело, и равна температуре абсолютно черного тела с такой же мощностью излучения. Известно, что с развитием науки и техники понятие «температура» расширяется. Например, при исследованиях высокотемпературной плазмы было введено понятие «электронная температура», характеризующее поток электронов в плазме.

Возможность измерять температуру термометром основывается на явлении теплового обмена между телами с различной степенью нагретости и на изменении термометрических (физических) свойств веществ при нагревании. Следовательно, для создания термометра и построения температурной шкалы, казалось бы, возможно выбрать любое термометрическое свойство, характеризующее состояние того или иного вещества и на основании его изменений построить шкалу температур. Однако сделать такой выбор не так легко, так как термометрическое свойство должно однозначно изменяться с изменением температуры, не зависеть от других факторов и допускать возможность измерения его изменений сравнительно простым и удобным способом. В действительности нет ни одного термометрического свойства, которое бы в полной мере могло удовлетворить этим требованиям во всем интервале измеряемых температур.

На примере ртутного и спиртового термометра обычного типа видно, что если шкалы их между точками, соответствующими температурам кипения воды и таяния льда при нормальном атмосферном давлении, разделить на 100 равных частей (считая за 0 точку таяния льда), то очевидно, что показания обоих термометров ртутного и спиртового будут одинаковы в точках 0 и 100, потому что эти температурные точки были приняты за исходные для получения основного интервала шкалы. Если этими термометрами будем измерять одинаковую температуру какой-либо среды не в этих точках, то показания их будут различны, так как коэффициенты объемного теплового расширения ртути и спирта различно зависят от температуры.

Термометром называют устройство (прибор), служащее для измерения температуры путем преобразования ее в показания или сигнал, являющийся известной функцией температуры. Чувствительным элементом термометра называют часть термометра, преобразующую тепловую энергию в другой вид энергии для получения информации о температуре. Различают термометры контактные и бесконтактные. Чувствительный элемент контактного термометра входит в непосредственное соприкосновение с измеряемой средой. Пирометром называют бесконтактный термометр, действие которого основано на использовании теплового излучения нагретых тел. Термокомплектом называют измерительную установку, состоящую из термометра, не имеющего собственной шкалы, и вторичного прибора, преобразующего выходной сигнал термометра в численную величину.

2 Температурные шкалы

Первым устройством, созданным для измерения температуры, считают водяной термометр Галилея (1597 г.). Термометр Галилея не имел шкалы и был, по существу, лишь индикатором температуры. Полвека спустя, в 1641 г., неизвестным для нас автором был изготовлен термометр со шкалой, имеющей произвольные деления. Спустя еще полвека Ренальдини впервые предложил принять в качестве постоянных точек, характеризующих тепловое равновесие, точки плавления льда и кипения воды. При этом температурной шкалы еще не существовало. Первая температурная шкала была предложена и осуществлена Д.Г. Фаренгейтом (1724 г). Температурные шкалы устанавливались произвольным выбором нулевой и других постоянных точек и произвольным принятием интервала температуры в качестве единицы. Фаренгейт не был ученым. Он занимался изготовлением стеклянных приборов. Ему стало известно, что высота столба ртутного барометра зависит от температуры. Это навело его на мысль создать стеклянный ртутный термометр с градусной шкалой. В основу своей шкалы он положил три точки: 1 - "точка сильнейшего холода (абсолютный нуль)", получаемая при смешениях в определенных пропорциях воды, льда и нашатыря, и принятая им за нулевую отметку (по нашей современной шкале, равная примерно -17,8°С); 2- точка плавления льда, обозначенная им +32°, и 3 - нормальная температура человеческого тела, обозначенная +96° (по нашей шкале +35,6°С). Температура кипения воды первоначально не нормировалась и лишь позднее была установлена +212° (при нормальном атмосферном давлении).

Через несколько лет, в 1731 г. Р.А. Реомюр предложил использовать для стеклянных термометров спирт такой концентрации, который при температуре плавления льда заполнял бы объем в 1000 объемных единиц, а при температуре кипения расширялся бы до 1080 единиц. Соответственно температуру плавления льда Реомюр предложил первоначально обозначить 1000°, а кипения воды 10800 (позднее 0° и 80°).

В 1742 г. А. Цельсий, используя ртуть в стеклянных термометрах, обозначил точку плавления льда за 100°, а точку кипения воды за 0°. Такое обозначение оказалось неудобным и спустя 3 года Штремер (или возможно К. Линней) предложил изменить обозначения, принятые вначале Цельсием, на обратные. Был предложен и ряд других шкал. М. В. Ломоносов предложил жидкостный термометр со шкалой 150° в интервале от точки плавления льда до точки кипения воды.

И.Г. Ламберт (1779 г.) предлагал воздушный термометр со шкалой 375°, принимая за 1° одну тысячную часть расширения объема воздуха. Известны также попытки создать термометры на основе расширения твердых тел (П. Мушен-брук, 1725 г.)

Все предлагаемые температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связано с температурой. Но в дальнейшем выяснилось, что термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

В 1848 г. Кельвин (У. Томсон) предложил построить температурную шкалу на термодинамической основе, приняв за нулевое значение температуру абсолютного нуля и обозначив температуру плавления льда +273,1°. Термодинамическая температурная шкала базируется на втором законе термодинамики. Как известно, работа в цикле Карно пропорциональна разности температур и не зависит от термометрического вещества. Один градус по термодинамической шкале соответствует такому повышению температуры, которое отвечает 1/100 части работы по циклу Карно между точками плавления льда и кипения воды при нормальном атмосферном давлении. Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

По мере расширения научных наблюдений и развития промышленного производства возникла естественная необходимость установить какую-то единую температурную шкалу. Первая попытка в этом направлении была предпринята в 1877 г., когда Международный комитет мер и весов принял в качестве основной температурной шкалы стоградусную водородную шкалу. За нулевую отметку была принята точка таяния льда, а за 100° - точка кипения воды при нормальном атмосферном давлении 760 мм. рт. ст. Температура определялась по давлению водорода в постоянном объеме. Нулевая отметка соответствовала давлению 1000 мм. рт. ст. Градусы температуры по этой шкале очень близко совпадали с градусами термодинамической шкалы, однако практическое применение водородного термометра ограничивалось из-за небольшого интервала температур примерно от -25 до +100°. В начале XX в. широко применялись шкалы Цельсия (или Фаренгейта - в англо-американских странах) и Реомюра, а в научных работах - также шкалы Кельвина и водородная.

1.3 Международная температурная шкала

При резко возросших потребностях в точной оценке температуры пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому после нескольких лет подготовки и предварительных временных решений VIII Генеральная конференция мер и весов приняла в 1933 г. решение о введении Международной температурной шкалы (МТШ). Это решение было в законодательном порядке утверждено большинством развитых стран мира. В СССР Международная температурная шкала была введена с 1 октября 1934 г. (Общесоюзный стандарт ОСТ ВКС 6954).

Международная температурная шкала является практическим осуществлением термодинамической стоградусной температурной шкалы, у которой температура плавления льда и температура кипения воды при нормальном атмосферном давлении соответственно-обозначены через 0° и 100°. МТШ основывается на системе постоянных, точно воспроизводимых температур равновесия (постоянных точек), которым присвоены числовые значения. Для определения промежуточных температур служат интерполяционные приборы, градуированные по этим постоянным точкам. Температуры, измеряемые по международной шкале, обозначаются через СС. В отличие от градусов шкалы Цельсия - базирующейся также на точках плавления льда и кипения воды при нормальном атмосферном давлении и имеющей обозначения 0° и 100°С, но построенной на иной основе (на линейной зависимости между температурой и расширением ртути в стекле), градусы по международной шкале стали называть "градусами международными" или "градусами стоградусной шкалы". Основные постоянные точки МТШ и присвоенные им числовые значения температур при нормальном атмосферном давлении приводятся ниже: (так же см. рис. №1):

а) температура равновесия между жидким и газообразным кислородом (точка кипения кислорода) - 182,96°

б) температура равновесия между льдом и водой, насыщенной воздухом (точка плавления льда) 0.000°

в) температура равновесия между жидкой водой и ее паром (точка кипения воды) 100,000°

г) температура равновесия между жидкой серой и ее паром (точка кипения серы) 414,60°

д) температура равновесия между твердым и жидким серебром (точка затвердевания серебра) 961.93°

е) температура равновесия между твердым и жидким золотом (точка затвердевания золота) 1064,43°

Рис. № 1 Международная температурная шкала

2. Методы измерения температуры

Для определения значения температуры какого-либо тела необходимо выбрать эталон температуры, то есть тело, которое при определённых условиях, равновесных и достаточно легко воспроизводимых, имело бы определённое значение температуры. Это значение температуры является реперной точкой соответствующей шкалы температур - упорядоченной последовательности значений температуры, позволяющей количественно определять температуру того или иного тела. Температурная шкала позволяет косвенным образом определять температуру тела путем прямого измерения какого-либо его физического параметра, зависящего от температуры.

Наиболее часто при получении шкалы температур используются свойства вода. Точки таяния льда и кипения воды при нормальном атмосферном давлении выбраны в качестве реперных точек в современных (но не обязательно изначальных) температурных шкалах, предложенных Андерсом Цельсием (1701-1744), Рене Антуаном Фершо Реомюром (1683 - 1757), Даниэлем Габриэлем Фаренгейтом (1686-1736). Последний создал первые практически пригодные спиртовой и ртутный термометры, широко используемые до сих пор. Температурные шкалы Реомюра и Фаренгейта применяют в настоящее время в США, Великобритании и некоторых других странах.

Введенную в 1742 году температурную шкалу Цельсия, который предложил температурный интервал между температурами таяния льда и кипения воды при нормальном давлении (1 атм или 101 325 Па) разделить на сто равных частей (градусов Цельсия), широко используют и сегодня, правда в уточненном виде, когда один градус Цельсия считается равным одному кельвину. При этом температура таяния льда берется равной 0 °C, а температура кипения воды становится приблизительно равной 99,975 °C. Возникающие при этом поправки, как правило, не имеют существенного значения, так как большинство используемых спиртовых, ртутных и электронных термометров не обладают достаточной точностью (поскольку в этом обычно нет необходимости). Это позволяет не учитывать указанные, очень небольшие поправки.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала - термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Эта температурная шкала подробно рассмотрена в третьей главе. Отметим только, что единицей измерения температуры в этой температурной шкале является один кельвин (1 К), одна из семи основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина) (1824-1907), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала - международная практическая. Эта шкала имеет 11 реперных точек - температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина - легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Тело, с помощью измерения термометрического признака которого осуществляется измерение температуры, называется термометрическим телом.

Термометрическими признаками могут быть изменения: объёма газа или жидкости, электрического сопротивления тел, разности электрического потенциала на границе раздела двух проводящих тел и т.д. Соответствующие этим признакам приборы для измерения температуры (термометры) будут: газовый и ртутный термометры, термометры, использующие в качестве датчика термосопротивление или термопару.

По принципу действия все термометры делятся на следующие группы, которые используются для различных интервалов температур:

Термометры расширения от - 260 до +700 °С, основанные на изменении объемов жидкостей или твердых тел при изменении температуры.

Манометрические термометры от - 200 до +600 °С, измеряющие температуру по зависимости давления жидкости, пара или газа в замкнутом объеме от изменения температуры.

Термометры электрического сопротивления стандартные от -270 до +750 °С, преобразующие изменение температуры в изменение электрического сопротивления проводников или полупроводников.

Термоэлектрические термометры (или пирометры), стандартные от -50 до +1800 °С, в основе преобразования которых лежит зависимость значения электродвижущей силы от температуры спая разнородных проводников.

Пирометры излучения от 500 до 100000 °С, основанные на измерении температуры по значению интенсивности лучистой энергии, испускаемой нагретым телом,

Термометры, основанные на электрофизических явлениях от -272 до +1000 °С (термошумовые термоэлектрические преобразователи, объемные резонансные термопреобразователи, ядерные резонансные термопреобразователи).

1 Контактный метод измерения температуры

Существуют два основных способа для измерения температур - контактные и бесконтактные. Контактные способы основаны на непосредственном контакте измерительного преобразователя температуры с исследуемым объектом, в результате чего добиваются состояния теплового равновесия преобразователя и объекта. Этому способу присущи свои недостатки. Температурное поле объекта искажается при введении в него термоприемника. Температура преобразователя всегда отличается от истинной температуры объекта. Верхний предел измерения температуры ограничен свойствами материалов, из которых изготовлены температурные датчики. Кроме того, ряд задач измерения температуры в недоступных вращающихся с большой скоростью объектах не может быть решен контактным способом.

Газовый термометр постоянного объёма (рис. № 2) состоит из термометрического тела - порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, - давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.

Рис. № 2 Схема газового термометра

Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра - хорошо совпадает с абсолютной шкалой температур.

Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.

Жидкостной термометр (рис. № 3) - это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия.

Рис. № 3 Схема жидкостного термометра

а - комнатный термометр с наружной шкалой;

б - лабораторный термометр с вложенной шкалой, имеющий на шкале точку 0°С.

Другими видами широко распространённых жидкостных термометров являются спиртовой (от -8 °C до +8 °C) и пентановый (от -200 °C до +35°C). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.

С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.

В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела - металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (~20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.

В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.

Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.

Другой принцип измерения температуры реализован в термопарах. Термопара (рис. № 4) представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (эталонный спай) - при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а следовательно, температуру измерительного спая.

В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком - возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий - платина.

Рис. № 4 Схема термопары

Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.

В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов

2 Бесконтактный метод измерения температуры

Бесконтактный способ основан на восприятии тепловой энергии, передаваемой через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого объема. Этот способ менее чувствителен, чем контактный. Измерения температуры в большой степени зависят от воспроизведения условий градуировки при эксплуатации, а в противном случае появляются значительные погрешности. Устройство, служащее для измерения температуры путем преобразования ее значений в сигнал или показание, называется термометром (ГОСТ 13417-76).- это термоэлементы, включенные последовательно, которые используют известный Seebeck - эффект. Термоэлемент состоит из двух электропроводных материалов, которые расположены в виде проводящих дорожек и которые в одной точке (так называемой hot junction) контактируют друг с другом. Если за счет внешнего воздействия возникнет разница температур между точкой контакта (hot junction) и обеими открытыми концами (cold junction), то на обоих концах термоэлементов появится напряжение в несколько милливольт.

При бесконтактном способе измерения температуры повышение температуры точки «hot junction» вызывается за счет абсорбирования попадающего в эту точку инфракрасного излучения. Каждый объект излучает инфракрасный свет, причем энергия этого света повышается с повышением температуры объекта. Базируясь на этом эффекте Thermopile-модули измеряют излучаемую мощность и таким образом с высокой точностью определяют температуру объекта.

3 Люминесцентный метод измерения температуры

В основе люминесцентных методов измерения температуры лежит температурная зависимость интенсивности люминесцентного излучения некоторых люминофоров, которое находит применение в различных датчиках измерения температуры и термопокрытиях.

Современные волоконно-оптические датчики позволяют измерять многие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике: безындукционность (т.е. неподверженность влиянию электромагнитной индукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.

Датчик на основе теплового излучения. В качестве устройств для измерения температуры могут быть использованы волоконно-оптические датчики на основе теплового излучения, сущность которых состоит в следующем. Изучаемое вещество при температуре большей 0 К вследствие тепловых колебаний атомов и молекул испускает тепловое излучение. Энергия излучения увеличивается по мере повышения температуры, а длина волны, на которой излучение максимально, уменьшается. Соответственно для определения температуры можно использовать формулу Планка для энергии теплового излучения черного тела на фиксированной длине волны или в диапазоне волн.

Основным преимуществом данного способа является возможность бесконтактного измерения высоких температур. В зависимости от диапазона измеряемых температур выбирают световые детекторы и оптические волокна. Область измерения температур для волоконно-оптических датчиков излучения находится в пределах от 400 до 2000 °С. При использовании оптических волокон, прозрачных для инфракрасных лучей с длиной волны 2 мкм и более, можно осуществлять измерение и более низких температур.

Датчик на основе поглощения света полупроводником. Известны также волоконно-оптические датчики, работа которых основана на оптических свойствах некоторых полупроводников. Используемый полупроводник имеет граничную длину волны спектра оптического поглощения. Для света с более короткой длиной волны, чем у проводника, поглощение усиливается, причем по мере роста температуры граничная длина волны отодвигается в сторону более длинных волн (около 3 нм/К). При подаче на полупроводниковый кристалл луч от источника света, имеющего спектр излучения в окрестности указанной границы спектра поглощения, интенсивность света, проходящего через светочувствительную часть датчика, с повышением температуры будет падать. По выходному сигналу детектора, указанным методом можно регистрировать температуру.

Используя данный метод можно мерить температуру в интервале от 30 до 300 °С с погрешностью ±0,5 °С.

Датчик на основе флуоресценции. Данный датчик устроен следующим образом. На торец оптического волокна светочувствительной части нанесено флуоресцентное вещество. Флуоресцентное излучение, возникающее под воздействием ультрафиолетовых лучей, проводимых оптическим волокном, принимается этим же волокном. Температурный сигнал выявляется путем вычисления отношения соответствующих значений интенсивности флуоресцентного излучения для сигнала с длиной волны, сильно зависящего от температуры к интенсивности сигнала с другой длиной волны, слабо зависящего от температуры.

Область измеряемых температур таким датчиком находится в пределах от -50 до 200 °С с погрешностью ±0,1 °С.

Использование волоконно-оптических датчиков, при всей своей привлекательности, позволяет производить измерение температуры только в локальной точке объекта, что несколько сужает область их применения.

Заключение

Температура является одним из основных параметров, подлежащих контролю со стороны систем автоматического управления металлургическими процессами. В условиях агрессивных сред и высоких температур, наиболее подходящими для использования являются фотоэлектрические пирометры. Они позволяют контролировать температуру от 100 до 6000 °С и выше. Одним из главных достоинств данных устройств является отсутствие влияния температурного поля нагретого тела на измеритель, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Так же фотоэлектрические пирометры обеспечивают непрерывное автоматическое измерение и регистрацию температуры, что позволяет использовать их в системах автоматического управления процессами без дополнительных затрат на приобретение и обслуживание устройств сопряжения.

Представленный в работе обзор люминесцентных методов измерения температуры по сравнению с контактными методами обладает теми же преимуществами, что и оптические методы. В то же время он является менее сложным при организации процесса изучения температуры и не менее точным по сравнению с другими оптическими методами. Кроме того, использование свойств люминесценции делает возможным разработку методов измерения температурных полей объектов сложной геометрической формы.

Из вышеприведенного обзора очевидна необходимость дальнейшей разработки и совершенствования технологий измерения температуры с использованием люминесцентных методов.

температура термометр люминесцентный

Литература

1.Преображенский, В.П. Теплотехнические измерения и приборы. / В.П. Преображенский - М.: Энергия, 1978. - С. 704

Чистяков, С.Ф., Радун Д. В. Теплотехнические измерения и приборы. / С.Ф. Чистяков - М.: Высшая школа, 1972. - С. 392

Никоненко, В.А., Сильд Ю.А., Иванов И.А. Разработка системы метрологического обеспечения измерительных тепловизорных приборов. - Измерительная техника, № 4, 2004. - С. 48-51

Измерения в промышленности: Справ. Изд.



Понравилась статья? Поделиться с друзьями: